Д.И. Ширко, В.И. Дорошевич, В.В. Игнатьев

ОЦЕНКА СТАТУСА ПИТАНИЯ ПО ПОКАЗАТЕЛЯМ ФУНКЦИОНАЛЬНЫХ ВОЗМОЖНОСТЕЙ ОРГАНИЗМА

Ключевые слова: статус питания, функциональные возможности организма Функциональные возможности молодых людей в возрасте 18 – 25 лет в большей мере связаны с содержанием жировой массы тела. Для оценки их статуса питания целесообразно использовать результаты комплексного показателя физической подготовки.

D.I.Shirko, V.I.Doroshevich, V.V. Ignatyev

ESTIMATION OF FOOD STATUS ON INDICATORS OF FUNCTIONALITY OF ORGANISM

Keywords: food status, functionality of organism

Functionality of young men 18 - depends 25 years on the fat maintenance in an organism. For an estimation of food status it is expedient to use results of a complex indicator of physical preparation.

Д.И. Ширко, В.И. Дорошевич, В.В. Игнатьев

ОЦЕНКА СТАТУСА ПИТАНИЯ ПО ПОКАЗАТЕЛЯМ ФУНКЦИОНАЛЬНЫХ ВОЗМОЖНОСТЕЙ ОРГАНИЗМА

Kафедра военной эпидемиологии и военной гигиены BMед Φ в БГMV

В формирование состояния здоровья человека, наряду с генетическими особенностями и различными факторами окружающей среды, существенный вклад вносит фактическое питание. Адекватное питание обеспечивает нормальный рост и развитие организма, состояние иммунитета, работоспособности, а также адаптационные возможности организма к изменению окружающей среды.

Одними из направлений исследования состояния здоровья, связанного с характером питания являются изучение состава и функции организма, которые характеризуют (отображают) сформировавшийся статус питания.

Для характеристики состава тела в настоящее время используют большое количество различных показателей, однако наиболее часто применяются процент от идеальной массы тела (% ИдМТ), индекс массы тела (ИМТ), процент жировой массы тела (% ЖМТ), конституциональный тип (КТ).

Функциональные возможности оцениваются путем определения физической работоспособности прямыми (по результатам выполнения нормативов военно-спортивного комплекса, характеризующих силу (подтягивание на перекладине), скорость (бег на дистанцию 100 м) и выносливость (бег на дистанцию 1000 или 3000 м) и комплексному показателю физической подготовленности (ПФП)) и косвенными (лабораторными) методами.

Из лабораторных методов наиболее часто используются пробы Руфье, Руфье – Диксона, степ-тест, PWC₁₇₀, Bт , PWC₁₇₀, Bт/кг, МПК, л/мин, МПК, мл/кг/мин Целью нашего исследования являлось изучение связи между показателями состава тела и функциональных возможностей организма и выбор наиболее значимых из них для характеристики статуса питания военнослужащих. При этом показатели должны отвечать следующим требованиям – иметь статистически достоверную связь, отличаться в группах с различным составом тела и иметь тенденцию к снижению от оптимального к недостаточному и избыточному статуса питания.

Материалы и методы

Объектом исследования являлись 1664 военнослужащих срочной службы 18-25летнего возраста и 992 курсанта 1-5 курсов УО «Военная академия Республики Беларусь», у которых общепринятыми методиками определялись соматометрические показатели (рост, масса тела, окружность грудной клетки).

Содержание жировой массы тела определялось калиперометрическим методом по толщине кожно-жировых складок в четырёх точках на правой половине тела (над бицепсом и трицепсом, под углом лопатки и в паховой области) и рассчитывался по формуле [7]:

$$\mathcal{K}MT = 495 : 1,162-0,063 \times \lg(\Sigma K \mathcal{K}C)-450,$$
 (1)

где ЖМТ -т жировая масса тела, в %;

1,162 и 0,0630 — эмпирические коэффициенты для расчета удельного веса тела у курсантов 17 — 19 лет, для курсантов 20 и более лет использовались коэффициенты 1,1631 и 0,0632;

∑КЖС - сумма толщины кожно-жировых складок, измеренных в 4 точках, мм.

Индекс массы тела определялся по формуле:

ИМТ = вес,
$$\kappa \Gamma$$
 : poct, M^2 (2)

Конституциональный тип определялся по методике М.В.Черноруцкого [5] , с использованием индекса Пинье , рассчитываемого по формуле:

$$KT = \text{рост}, \text{ см} - (\text{вес}, \text{ кг} + \text{окружность грудной клетки, см})$$
 (3)

Идеальная масса тела определялась по методике, предложенной Европейским нутрициологическим обществом и рассчитывалась по формуле:

Ид
$$MT$$
= poct, cm - 100-(poct, cm - 152) x 0,2 (4)

Результаты преодоления дистанций 100 и 1000 м, подтягивания на перекладине были взяты из материалов, полученных при проведении смотра-конкурса физической подготовленности Вооруженных Сил и результатов контрольных занятий.

ПФП рассчитывался по методике Д.М. Малинского и С.М. Кудеркова [4], основанной на суммировании количества баллов, выставляемых за выполнение отдельных упражнений, и последующей оценке полученной суммы по 100-бальной шкале (табл. 1).

Таблица 1 Шкала для комплексной оценки ПФП по трем упражнениям

Подтягивание на перекладине		Бег дистанци	на ию 100 м	Бег на дистанцию 1000 м		ſ	
количе- ство раз	баллы	время бега, с	баллы	время бега, с	баллы	время бега, с	баллы
1	1	16,3 и>	0	246 и >	0	225	28
2	2	16,2	1	245	1	224	29
3	2 3	16,1	2	244	3	223	31
4	4	16,0	3	243	4	222	32
5	4 5 7	15,9	4	242	5	221	33
6	7	15,8	5	241	7	220	35
7	10	15.7	6	240	8	219	36
8	13	15,6	7	239	9	218	37
9	16	15,5	8	238	11	217	39
10	19	15,4	9	237	12	216	40
11	23	15,3	10	236	13	215	41
12 и >	27	15,2	11	235	15	214	43
		15.1	12	234	16	213	44
		15,0	13	233	17	212	45
		14,9	14	232	19	211	47
		14,8	15	231	20	210	48
		14,7	16	230	21	209	49
		14,6	17	229	23	208	51
		14.5 и<	18	228	24	207	52
				227	25	206	53
				226	27	205 и <	55

Дифференциальная оценка статуса питания по ПФП предложена следующая: при количестве баллов более 70 обследованные лица относятся к оптимальному статусу, в пределах 30-70 баллов – к обычному и менее 30 баллов – к избыточному и недостаточному статусу питания.

При проведении степ-теста [3,6] обследуемый выполнял первую нагрузку – восхождение на ступеньку высотой 25 см в течение 3 минут в темпе 20 восхождений в минуту. Вторая нагрузка выполнялась через 1–2 минуты после первой и заключалась в восхождении на ступеньку высотой 40 см в том же темпе и в течение того же времени. При этом у испытуемого пальпаторно регистрировалась частота пульса за 10 секунд с последующим перерасчетом результата за 1 минуту. Индекс степ-теста оценивался по следующим критериям: 60 и более – «хорошо», 50–59 – «удовлетворительно», менее 50 – «неудовлетворительно». Затем рассчитывалась абсолютная механическая мощность выполненной работы по формуле 5:

$$PWC_{170} = N_1 + (N_2 - N_1) \cdot [(170 - f_1) : (f_2 - f_1)], \tag{5}$$

где PWC₁₇₀ – абсолютная механическая мощность, Вт;

 N_1 — мощность первой нагрузки (Вт), равная величине МТ (кг) испытуемого, умноженной на высоту первой ступеньки (0, 25 м), на число восхождений в минуту (20), на коэффициент 1,3 (отражающий затрату энергии на спуск со ступеньки) и на 0,167 (для перевода в Вт);

 N_2 — мощность второй нагрузки (Вт), рассчитанная так же, как и при первой нагрузке, за исключением высоты второй ступеньки (0, 40 м);

 f_1 – ЧСС в минуту в конце первой нагрузки;

 f_2 – ЧСС в минуту в конце второй нагрузки.

Удельная механическая мощность определялась путем деления абсолютной механической мощности на величину массы тела (МТ) в килограммах. [4].

Расчёт МПК осуществлялся по формуле 6 [3,7]:

$$M\Pi K = 10.4 \cdot PWC_{170} + 1240. \tag{6}$$

Более информативным показателем является потребление кислорода, рассчитанное на 1 кг МТ, мл/кг·мин.

Результаты и обсуждение

На первом этапе нами был проведен корреляционный анализ с целью установления связей между показателями состава тела и физической подготовленности (табл. 2).

Таблица 2 Оценка корреляционной зависимости между показателями физической подготовленности и составом тела

Показатели	r	t	р				
Подтягивание							
ИМТ	-0,002	-0,07	>0,05				
KT	-0,04	-1,31	>0,05				
% ИдМТ	-0,006	-0,19	>0,05				
% ЖМТ	0,004	2,0	< 0,05				
Бе	Бег на дистанцию 100 м, с						
ИМТ	-0,07	-2,08	< 0,05				
KT	0,09	2,77	< 0,01				
% ИдМТ	-0,07	-2,13	< 0,05				
% ЖMT	0,34	16,0	< 0,001				
Бег на дистанцию 1000 м, с							
ИМТ	0,04	1,24	>0,05				
KT	-0,02	-0,67	>0,05				
% ИдМТ	0,04	1,22	>0,05				
% ЖMT	0,04	1,6	>0,05				
ПФП							
ИМТ	0,018	0,57	>0,05				
KT	-0,02	-0,63	>0,05				
% ИдМТ	0,018	0,57	>0,05				
% XMT	- 0,11	41,0	< 0,001				

Из представленных выше данных видно, что между показателями состава тела и результатами бега на дистанцию 1000 м статистически достоверные связи отсутствуют (P > 0.05).

Между показателями ИМТ, КТ, ИдМТ, результатами подтягивания на перекладине и комплексным показателем физической подготовленности они также не определяются, в то

время как с % ЖМТ у данных показателей физической подготовленности с различной степенью достоверности определяются слабые связи (подтягивание - r = - 0,11, P < 0,001)

В тоже время различной силы статистически достоверные связи определяются между всеми показателями состава тела и результатами бега на дистанцию 100 м. С ИМТ и ИдМТ они наиболее слабые (r = -0.07, P < 0.05), несколько сильнее и статистически достовернее с КТ (r = 0.09, P < 0.01). Наибольшая степень зависимости результатов бега на дистанцию 100 м определяется от % ЖМТ (r = 0.34, P < 0.001).

Результаты, полученные при проведении корреляционного анализа между показателями содержания жира в организме и косвенными показателями физической работоспособности представлены в таблице 3.

Таблица 3 Оценка корреляционной связи между количеством жира в организме и показателями физической работоспособности

Показатели	Среднее	r	t	P	
Показатели	значение		l	1	
% ЖМТ	15,1±0,09	-	-	-	
Степ-тест,	59,9±0,19	0,34	17	P<0,001	
усл.ед.	37,7±0,17	0,54	17	1 <0,001	
PWC ₁₇₀ , B _T	178,0±0,33	- 0,27	13,5	P<0,001	
PWC_{170} , $B_T/к\Gamma$	2,56±0,04	- 0,81	50	P<0,001	
МПК, л/мин	3,1±0,04	0,50	27,8	P<0,001	
МПК,	44,1±0,16	- 0,92	230	P<0,001	
мл/кг/мин	44,1±0,10	- 0,92	230	1 < 0,001	

Приведенные в таблице данные указывают на наличие слабой степени отрицательной связи (r = - 0,27; P<0,001) между выполненной абсолютной механической мощностью и процентным содержанием жира в организме.

Установлена средней степени прямая корреляционная связь между количеством жира в организме, показателями степ-теста и абсолютными значениями МПК (r = 0,34; P<0,001 и r

= 0,50; P<0,001 соответственно). Сильная степень обратной корреляционной связи выявлена между количеством жира в теле, удельной механической мощностью выполняемой работы (r = - 0,81; P<0,001), а также с относительным МПК, рассчитанным на 1 кг МТ (r = - 0,92; P<0,001).

В результате проведенного анализа полученных результатов исследования можно констатировать:

- показатели физической подготовленности в наибольшей степени связаны с процентным количеством ЖМТ;
- результаты преодоления дистанции 1000 м не зависят от показателей состава тела и не могут быть использованы для оценки фактического питания.

Следующим этапом нашего исследования было изучение данных показателей у обследуемых лиц с различной ЖМТ.

По результатам проделанной работы установлено (табл. 4), что показатели МПК, л/мин и преодоления дистанции 100 м не имеют достоверных отличий в группах обследуемых с различным содержанием жира в организме, а результаты РWС₁₇₀ Вт/кг достоверно отличаются от контрольной группы (% ЖМТ 12 – 18 %) только у лиц с содержанием жира в теле более 21 %. По результатам степ-теста полученные величины не имеют отличий от контрольной только в группе с ЖМТ 18 – 21 %.

Все остальные показатели имеют достоверные отличия в группах обследуемых с различным содержанием жира в организме.

В последующем при дальнейшем изучении не использовались такие показатели как: PWC₁₇₀, Bт/кг, МПК, л/мин, результаты преодоления дистанции 100 м.

При рассмотрении тенденции распределения полученных результатов по группам обследуемых с различными показателями статуса питания, установлено, что оптимальные результаты физической работоспособности были в группах с содержанием жира в организме

9-12 % (МПК, мл/кг/мин) и 18-21 % (Степ-тест, PWC₁₇₀₎, снижаясь с уменьшением и увеличением его количества, в то время, как наилучшие результаты выполнения упражнений ВСК были зарегистрированы в контрольной группе (ЖМТ 12-18 %) и ухудшались с уменьшением и увеличением ЖМТ.

Таблица 4
Показатели функционального состояния военнослужащих с различным составом тела

Поморожани	% ЖМТ						
Показатели	менее 9	9–12	12–18	18–21	более 21		
Степ-тест, усл.ед.	54,3±1,34***	56,1±0,69***	65,5±0,23	68,2±0,54	55,6±2,36**		
PWC ₁₇₀ , Bt	162,9±2,33***	167,8±2,33***	193,0±0,39	200,1±0,93***	166,0±1,18***		
PWC ₁₇₀ , Вт/кг	2,74±0,30	2,78±0,15	2,73±0,05	2,56±0,10	1,86±0,43*		
МПК, л/мин	2,9±0,31	3,0±0,16	3,2±0,05	3,3±0,12	3,0±0,56		
МПК, мл/кг/мин	48,9±1,28*	49,8±0,65***	46,0±0,19	42,3±0,43***	33,7±1,83***		
Количество подтягиван ий на перекладин е, раз	7,9 ± 0,51***	9,3 ± 0.28***	$11,5 \pm 0,09$	10,2± 0,21***	7,5 ± 0.87***		
Бег на дистанцию 100 м, с	$15,56 \pm 0,72$	$14,78 \pm 0,35$	14,52 ± 0,10	$15,20 \pm 0,26$	$15,90 \pm 1,26$		
ПФП, баллы	20 ± 0,82***	44 ± 0,61***	$68 \pm 0,23$	42 ± 0,43***	15 ± 1,22***		

^{* -} P < 0,05, ** - P < 0,01, *** - P < 0,001 — статистическая достоверность различий с группой лиц, у ЖМТ 12–18 %

Однако зависимость и достоверность результатов в подтягивании на перекладине от состава тела менее выражена, чем ПФП (r =0,004, P < 0,05 и r = - 0,11, P < 0,001).

В связи с этим наиболее оптимальным для оценки статуса питания является ПФП.

В тоже время методика определения ПФП, предложенная Д.М. Малинским и С.М. Кудерковым требует коррекции. Это связано с тем, что нормативы ВСК претерпели изменения. Установление коэффициентов весомости каждого упражнения (кросс 1000 м – 0,55, подтягивание на перекладине - 0,27, бег на 100 м – 0,18) приводит к градации физических качеств военнослужащего на более и менее важные, что по нашему мнению, неверно при оценке гармоничности физической подготовленности. Градация весомости каждого упражнения при оценке статуса питания ведет к тому, что суммы, полученной при отличном выполнении двух наиболее весомых (бег на дистанцию 1000 м и подтягивание на перекладине) упражнений, без учета третьего (бег на дистанцию 100 м), достаточно для отличной оценки всего статуса питания.

Для обоснования новых критериев мы использовали методику математической обработки первичных показателей [1,2], с преобразованием результатов во вторичные нормально распределенные оценки – процентили.

В результате установлено, что значения медианы результатов выполнения нормативов ВСК курсантами и военнослужащими срочной службы, имеют существенные отличия. Выше они у курсантов (подтягивание – 16 и 9 раз, преодоление дистанции 100 м – 14 и 15 секунд, преодоление дистанции 1000 м – 200 и 240 секунд соответственно), что связано вероятно, с тем, что перед поступлением в высшее учебное заведение будущие курсанты проходят испытания по физической подготовке, т.е. обучение продолжают наиболее подготовленные молодые люди, занятия проводят квалифицированные преподаватели, в то время как в воинских частях занятия по физической подготовке проводят командиры подразделений.

Если у курсантов они соответствуют нормативам для второго курса, то у военнослужащих срочной службы они значительно ниже предъявляемых для солдат прослуживших менее 6 месяцев. Средние же значения, полученные при совместном анализе этих двух групп практически полностью соответствуют отличным показателям для данной категории военнослужащих (подтягивание на перекладине – 12 раз, преодоление дистанции $1000 \,\mathrm{m} - 14,5 \,\mathrm{u} 14,4$ секунды, преодоление дистанции $1000 \,\mathrm{m} - 220$ секунд).

Это послужило основанием для того, чтобы взять их за основу.

Мы рекомендуем все упражнения оценивать по 100-балльной шкале (табл. 5).

Таблица 5 Шкала для комплексной оценки ПФП по трем упражнениям

Подтягивание на		Бег	` на	Бег на дистанцию 1000 м			τ.
перекладине		дистанци	ию 100 м	вет на дистанцию 1000 м		1	
количе-	баллы	время	баллы	время	баллы	время	баллы
ство раз		бега, с		бега, с		бега, с	
6	0	16,3 и>	0	261 и >	0	240	50
7	10	16,2	10	260	10	239	52
8	30	16,1	15	259	12	238	54
9	50	16,0	20	258	14	237	56
10	70	15,9	25	257	16	236	58
11	85	15,8	30	256	18	235	60
12 и >	100	15.7	35	255	20	234	62
		15,6	40	254	22	233	64
		15,5	45	253	24	232	66
		15,4	50	252	26	231	68
		15,3	55	251	28	230	70
		15,2	60	250	30	229	73
		15.1	65	249	32	228	76
		15,0	70	248	34	227	79
		14,9	75	247	36	226	82
		14,8	80	246	38	225	85
		14,7	85	245	40	224	88
		14,6	90	244	42	223	91
		14,5	95	243	44	222	94
		14,4 и<	100	242	46	221	97
				241	48	220 и <	100

Подтягивание на перекладине оценивается следующим образом: 0 - 6 подтягиваний – 0 баллов, 7 подтягиваний – 10 баллов, далее за каждое подтягивание с 8 по 10 начисляется по 20 баллов, 11 раз – 15 баллов; 12 раз и более оцениваются в 100 баллов;

бег на 100 м: медленнее 16,2 с -0 баллов, 16,2 с -10 баллов; с 16,1 с до 14,5 с за каждые 0,1 с начисляется 5 баллов; 14,4 с и быстрее - оцениваются в 100 баллов;

бег на 1000 м: 261 с и медленнее оцениваются в 0 баллов; 260 с - 10 баллов; с 259 с до 230 с за каждую секунду начисляется 2 балла; с 229 каждая секунда оценивается в 3 балла; 220 с и меньше – оцениваются в 100 баллов.

Статус питания оценивается как оптимальный при величине ПФП 270 и выше баллов, повышенный или пониженный, если ПФП лежит в диапазоне 150 – 269 баллов, и недостаточный или избыточный при величине ПФП менее 150 баллов.

Выводы:

- 1. Функциональные возможности молодых людей в возрасте 18 25 лет в большей мере связаны с процентным содержание жирового компонента тела.
- 2. Для оценки данной категории населения целесообразно использовать результаты ПФП, руководствуясь следующими нормативами:

оптимальный статус питания — 270 и более баллов; пониженный и повышенный статус питания — 150 — 269 баллов; недостаточный, избыточный — менее 150 баллов.

Литература:

- 1. Венцлав С.В., Данилов М.А., Богачев А.Ф. Применение математических методов в задачах профессионального отбора и распределения кадров / С.В. Венцлав, М.А. Данилов, А.Ф Богачев М.: 1987. 42 с.
- 2. Власенко В.И., Вех В.В., Дубровская О.В. К вопросу об использовании среднестатистических норм / В.И. Власенко, В.В. Вех, О.В. Дубровская: Тез. докл. науч.-практ. конф. М., 1986. С. 48 49.
- 3. Карпман В.Л., Белоцерковский З.П., Гудков И.А. Тестирование в спортивной медицине / В.Л. Карпман, З.П. Белоцерковский, И.А. Гудков М.: Физкультура и спорт, 1988. 208 с.
- 4. Кошелев Н.Ф., Михайлов В.П., Лопатин С.А. Гигиена питания войск / Н.Ф. Кошелев, В.П. Михайлов, С.А. Лопатин СПб.: ВМА, 1993. Ч. 2. 259 с.

- 5. Никитюк Б. А., Чтецов В. П. Морфология человека. / Б. А.Никитюк, В.П.Чтецов М.: Изд-во МГУ, 1983. 320 с.
- 6. Новожилов Г.Н., Ломов О.П. Гигиеническая оценка микроклимата / Г.Н. Новожилов, О.П. Ломов– Л.: Медицина, Ленингр. отд-ние, 1987. 112 с.
- 7. Durnin J.V. Body fat assessed from total body density and its estimation from skin fold thickness: measurements on 481 men and women aged from 16 to 72 years / J.V. Durnin, J. Womersley // Brit. J. Nutr. 1974. Vol. 32, No. 2. P. 77 97.