ПРОТИВОИШЕМИЧЕСКИЙ И АНТИАРИТМИЧЕСКИЙ ЭФФЕКТЫ ФЕНОМЕНОВ ДИСТАНТНОГО ИШЕМИЧЕСКОГО ПРЕ- И ПОСТКОНДИЦИОНИРОВАНИЯ У КРЫС С ГИПЕРХОЛЕСТЕРИНЕМИЕЙ

Юшкевич П.Ф., Висмонт Ф.И., Мрочек А.Г.

УО «Белорусский государственный медицинский университет» Республиканский научно-практический центр «Кардиология»

Настоящее исследование посвящено выявлению воспроизводимости противоишемического И антиаритмического эффектов феноменов дистантного ишемического пре- и посткондиционирования миокарда у крыс с гиперхолестеринемией. Установлено, что указанные феномены не эффективны в плане ограничения размеров зоны некроза в миокарде левого желудочка крыс с гиперхолестеринемией. В тоже время у крыс с гиперхолестеринемией воспроизводится выраженный антиаритмический эффект феномена дистантного ишемического прекондиционирования.

Ключевые слова: противоишемический эффект, антиаритмический эффект, дистантное ишемическое прекондиционирование, дистантное ишемическое посткондиционирование, ишемия, реперфузия, гиперхолестеринемия, зона риска, зона некроза.

ANTIISCHEMIC AND ANTIARRHYTHMIC EFFECTS PHENOMENONS OF REMOTE ISCHEMIC PRE- AND POSTCONDITIONING IN RATS WITH GYPERCHOLESTERINEMIA

Jushkevich P.F., Vismont F.I., Mrochek A.G.

Belarusian State Medical University Research Centre Cardiology

The aim of this study was to determine the antiischemic and antiarrhythmic effects phenomenons of remote ischemic pre- and postconditioning in rats with hypercholesterinemia. It was found, that remote ischemic pre- and postconditioning in rats with hypercholesterinemia not protect myocardium against irreversible ischemia-reperfusion injury. However, remote ischemic preconditioning protect myocardium against arrhythmias in rats with hypercholesterinemia.

Key words: antiischemic effect, antiarrhythmic effect, remote ischemic preconditioning, remote ischemic postconditioning, ischemia, reperfusion, hypercholesterinemia, the area at risk, the area of necrosis.

Введение

На сегодняшний день заболевания сердечно-сосудистой системы занимают лидирующее положение среди причин инвалидности и смертности населения экономически развитых стран мира, в том числе и Республики Беларусь [1]. В структуре данной группы заболеваний одна из ведущих позиций принадлежит ишемической болезни сердца (ИБС) и в частности, острым ее формам – нестабильной стенокардии и острому инфаркту миокарда. Учитывая большую медицинскую и социальную значимость проблемы, поиск новых, эффективных методов кардиопротекции при острых нарушениях коронарного кровотока является актуальной задачей современной экспериментальной и клинической медицины. В частности, экспериментальные исследования последних лет продемонстрировали, что размер инфаркта миокарда и длительность ишемических нарушений сердечного ритма могут быть значительно уменьшены при помощи ишемии конечности, не только предшествующей длительной ишемии миокарда – дистантное ишемическое прекондиционирование (ДИПК) [2, 3, 4], но и осуществляемой через определенное (10 мин) время после начала реперфузии миокарда – дистантное ишемическое посткондиционирование (ДИПостК) [5]. Способность ДИПК и ДИПостК оказывать кардиопротекторное (противоишемическое и антиаритмическое) действие имеет место не только в экспериментальных исследованиях, но и в клинической практике [6, 7, 8, 9, 10].

В клинической практике необходимость защиты миокарда от ишемического и реперфузионного повреждения в основном возникает у пациентов пожилого возраста, имеющих различную сопутствующую патологию, в том числе связанную с нарушениями липидного обмена [13, 14, 15]. Как известно, одним из наиболее распространенных нарушений липидного обмена является гиперхолестеринемия (ГХЕ), которая является фактором риска сердечно-сосудистых заболеваний [22]. Имеющиеся в литературе данные экспериментальных исследований, касающихся воспроизводимости кардиопротекторных эффектов феноменов локального ишемического пре- и посткондиционирования у экспериментальных животных с ГХЕ, весьма противоречивы [11, 27]. Так, результаты одних исследований указывают на отсутствие противоишемического эффекта феноменов локального ишемического пре- и посткондиционирования [16, 17, 18, 19, 23], согласно данным других исследований, напротив, у экспериментальных животных с ГХЕ присутствует выраженный инфаркт-лимитирующий эффект указанных феноменов [20, 21, 24]. Причины такого расхождения результатов исследований до сих пор не выяснены. Предполагается, что важное значение в данной ситуации может иметь функциональное 12]. состояние печени [11,В тоже время данные 0 воспроизводимости противоишемического и антиаритмического эффектов феноменов ДИПК и ДИПостК у экспериментальных животных с ГХЕ в современной литературе отсутствуют.

Цель исследования — выявление воспроизводимости противоишемического и антиаритмического эффектов феноменов дистантного ишемического пре- и посткондиционирования миокарда у крыс с гиперхолестеринемией.

Материалы и методы исследования

37 Исследование эффективности ДИПК ДИПостК выполнено наркотизированных крысах-самцах линии Wistar с ГХЕ. Масса крыс составляла – 200-250 г., а их возраст – 3-4 мес. ГХЕ вызывали однократным интрагастральным введением животным 10% раствора холестерола, приготовленного на оливковом масле, в дозе 10 мл/кг в течение 10 дней. В качестве контроля использовали 21 крысу с аналогичными характеристиками, которым в течение 10 дней интрагастрально вводилось оливковое масло в дозе 10 мл/кг (крысы без ГХЕ). Для подтверждения наличия ГХЕ крысам выполнялось биохимическое исследование сыворотки крови с помощью биохимического анализатора Olympus (крысы с ГХЕ, n=8, крысы без ГХЕ, n=8). При этом определялось содержание в сыворотке крови общего холестерина (ОХ) и триглицеридов (ТГ). Воспроизведение экспериментальных протоколов на крысах с ГХЕ выполнялось через 24 часа после последнего введения холестерола. Для наркотизации животных использовали этаминал натрия в дозе 50 мг/кг внутрибрющинно с последующей внутривенной инфузией поддерживающей дозы 10 мг/кг/час. Крыс переводили на искусственное дыхание атмосферным воздухом при помощи аппарата ИВЛ с частотой дыхания 56-60 в минуту. Наличие проходимости дыхательных путей контролировалось по давлению в трахее, нормальным значением которого на вдохе считалось 10-15 мм. рт. ст. В ходе экспериментов непрерывно регистрировались ЭКГ во II стандартном отведении и системное артериальное давление (АД), полученные при этом данные обрабатывались с помощью компьютерной программы Spike 4. Для определения АД крысам канюлировали правую общую сонную артерию. Температура тела измерялась в прямой кишке с Harvard (Великобритания) помощью электротермометра И поддерживалась электрогрелкой на уровне 37,0°C.

Грудную клетку наркотизированного животного вскрывали в четвертом межреберном промежутке слева. В контрольной группе крыс с ГХЕ после 15-минутной стабилизации гемодинамики выполняли 30-минутную окклюзию передней нисходящей коронарной артерии (ПНКА) путем механического ее пережатия при помощи фишки (контроль, n=11). Окклюзия артерии подтверждалась цианозом ишемизированной области, снижением АД (на 10 - 20 мм. рт. ст.) и подъемом сегмента ST на ЭКГ.

Реперфузия миокарда достигалась удалением фишки и подтверждалась исчезновением цианоза и возвращением сегмента ST к изолинии. Длительность реперфузии составляла 120 минут. Животные опытных групп с ГХЕ (ДИПК, n=14 и ДИПостК, n=12) дополнительно подвергались воздействию 15-минутной окклюзии обеих бедренных артерий соответственно за 10 мин до и через 10 мин после 30-минутной острой ишемии миокарда. Через 24 часа после последнего введения оливкового масла аналогичные протоколы экспериментов выполнялись на крысах без ГХЕ (контроль, n=7, ДИПК, n=7, ДИПостК, n=7).

Изучались следующие показатели гемодинамики: среднее АД (АДср.), частота сердечных сокращений (ЧСС), двойное произведение (ДП). АДср. рассчитывали как АД диастолическое + 1/3(АД систолическое – АД диастолическое), ДП – как ЧСС×АД систолическое/100. Показатели гемодинамики регистрировались непрерывно в течение эксперимента и оценивались в конце 15-минутной стабилизации гемодинамики после вскрытия грудной клетки, в начале 30-минутной окклюзии ПНКА, в начале реперфузии, а также каждые 30 минут в течение реперфузии.

Зону риска определяли с помощью внутривенного введения в левую общую яремную вену 0,5 мл 5% раствора синьки Эванса в конце реперфузии при кратковременной повторной окклюзии ПНКА. Зона риска определялась, как не окрашенная в синий цвет. Затем сердце извлекали и отделяли правый желудочек. После замораживания в морозильной камере (-20°C в течение 30 мин) левый желудочек разрезали на 6 поперечных срезов. Срезы взвешивали на торсионных весах, затем их сканировали при помощи сканера НР с обеих сторон. После этого, для идентификации зоны некроза, срезы помещали в 1% раствор трифенилтетразолия хлорида на 15 минут при температуре 37 °C. Жизнеспособный миокард (клетки, сохранившие дегидрогеназную активность) окрашивался в кирпично-красный цвет, а некротизированная ткань была белесой. После 24-часовой инкубации срезов в 10% растворе формалина срезы сканировали повторно для определения соотношения площадей зоны риска и зоны некроза. Размеры зон риска и некроза определяли при помощи компьютерной планиметрии с использованием программы Adobe Photoshop 6.0. Полученные в исследовании результаты заносились в электронную таблицу Excel 7.0 и обрабатывались с помощью стандартного пакета статистических программ Statistica 8. Статистическая значимость различий данных оценивалась при помощи ANOVA и теста множественных сравнений Данна. Данные представлены в формате среднее ± стандартная ошибка среднего. Значения p<0,05 рассматривались как достоверные.

Для оценки антиаритмического эффекта ДИПК и ДИПостК подсчитывалась общая длительность нарушений сердечного ритма во время 30-минутной острой коронарной окклюзии - фибрилляции желудочков (ФЖ), пароксизмальной желудочковой тахикардии (ПЖТ), парной желудочковой экстрасистолии, желудочковой экстрасистолии по типу бигеминии, также оценивалось наличие реперфузионных нарушений сердечного ритма. На основе полученных данных рассчитывались медиана (Ме) и интерквартильный размах (25-й; 75-й процентили). При сравнении групп использовали критерий Крускала—Уоллиса и тест множественных сравнений Данна.

Критериями исключения животных из опытов являлись, ЧСС до начала эксперимента менее 300 ударов в минуту и среднее АД ниже 60 мм. рт. ст.

Результаты и их обсуждение

Выживаемость крыс с ГХЕ после острой коронарной окклюзии составила 56,8% (16 крыс из 37 погибли во время острой ишемии миокарда). Причем показатель выживаемости в контрольной группе составил 63,6%, в группе ДИПК – 50,0%, в группе ДИПостК – 58,3%. Таким образом, из каждой экспериментальной группы крыс с ГХЕ для последующего анализа данных было отобрано по 7 животных.

У крыс с ГХЕ содержание ОХ в сыворотке крови составило $5,74\pm0,44$ ммоль/л (p<0,01), ТГ $-1,21\pm0,17$ ммоль/л (p<0,01). У крыс без ГХЕ содержание ОХ составило $1,61\pm0,14$ ммоль/л, ТГ $-0,50\pm0,05$ ммоль/л. Таким образом, результаты биохимического исследования сыворотки крови указывают на наличие ГХЕ у крыс, которым в течение 10 дней интрагастрально вводили 10% раствор холестерола.

Показатели гемодинамики во время эксперимента (после вскрытия грудной клетки, в начале 30-минутной ишемии миокарда, в начале реперфузии и далее каждые 30 минут в течение реперфузии) во всех группах крыс с ГХЕ и крыс без ГХЕ представлены в табл. 1. Во всех группах крыс с ГХЕ в течение первых минут после окклюзии ПНКА отмечалось кратковременное (3-5 мин) снижение АДср. примерно на 10-15 мм. рт. ст. Во время окончания острой коронарной окклюзии (начало реперфузии) во всех группах крыс с ГХЕ происходило некоторое (10-20 мм. рт. ст.) повышение АДср., причем в группах ДИПК и ДИПостК отличия данного показателя оказались статистически значимыми (р<0,01). В дальнейшем в период реперфузии показатель АДср. во всех группах крыс с ГХЕ оставался относительно стабильным. Статистически значимых отличий между анализируемыми группами крыс с ГХЕ по показателю ЧСС на протяжении всего эксперимента выявлено не было (р>0,05). В течение первых минут после окклюзии ПНКА в контрольной группе и группе ДИПК отмечалось некоторое (примерно на 10-15 уд/мин) повышение ЧСС, а в группе крыс с ГХЕ, в которой воспроизводился феномен ДИПостК, —

напротив, отмечалось снижение ЧСС примерно на 30 уд/мин. Во время начала реперфузии во всех группах крыс с ГХЕ отмечалось повышение ЧСС примерно на 20-30 уд/мин. В дальнейшем в период реперфузии ЧСС во всех группах крыс с ГХЕ оставалась относительно стабильной. Показатели гемодинамики у крыс без ГХЕ статистически значимо не отличались от таковых у крыс с ГХЕ (p>0,05) (табл. 1).

При сравнении ДП, характеризующего потребность миокарда в кислороде, во всех группах крыс с ГХЕ и крыс без ГХЕ до начала эксперимента статистически значимых различий выявлено не было (р>0,05). В начале ишемии миокарда величина ДП в анализируемых группах крыс с ГХЕ статистически значимо не отличалась (р>0,05). В начале реперфузии ДП достоверно различалось только в группах крыс с ГХЕ, в которых воспроизводились феномены ДИПК и ДИПостК (р<0,05). В дальнейшем, на протяжении реперфузии статистически значимых различий ДП во всех группах крыс с ГХЕ не отмечалось (р>0,05). Достоверных различий между анализируемыми группами крыс с ГХЕ и крыс без ГХЕ по показателю ДП на протяжении всего эксперимента также не выявлено (р>0,05).

Длительность нарушений ритма сердца во время 30-минутной окклюзии ПНКА (медиана и интерквартильный размах) у крыс с ГХЕ и крыс без ГХЕ представлена на рис. 1. В контрольной группе крыс с ГХЕ во время ишемии миокарда наблюдались нарушения ритма общей длительностью от 107 до 669 сек. При этом, у 5 из 7 крыс отмечалась ФЖ, а у 6 из 7 – ПЖТ. Реперфузионные нарушения сердечного ритма имели место у 6 крыс контрольной группы. В группе крыс с ГХЕ, в которой воспроизводился феномен ДИПК, длительность ишемических нарушений сердечного ритма составила от 14 до 112 сек. ФЖ имела место только у 1 крысы данной группы, а ПЖТ наблюдалась у 2 крыс группы ДИПК. Реперфузионные нарушения сердечного ритма были выявлены у 3 из 7 крыс группы ДИПК. В группе крыс с ГХЕ, в которой воспроизводился феномен ДИПостК, во острой миокарда отмечались нарушения время ишемии ритма сердца продолжительностью от 19 до 188 сек. Лишь у 1 из 7 крыс данной группы была выявлена ФЖ, а ПЖТ наблюдалась у 5 крыс указанной группы. Реперфузионные нарушения сердечного ритма имели место у 3 животных группы ДИПостК. Длительность аритмий в контрольной группе составила 316 (137; 563) сек, в группе ДИПК – 48 (31; 80) сек (р<0,05), в группе ДИПостК - 97 (78; 166) сек (р<0,05) (рис. 1).

Таким образом, установлено, что у крыс с ГХЕ длительность аритмий во время острой коронарной окклюзии в группе ДИПК значительно меньше, чем в контрольной группе (p<0,05). Также стоит отметить, что несмотря на отсутствие статистически значимых различий (p>0,05 по критерию Фишера), в группе крыс с ГХЕ, в которой

воспроизводился феномен ДИПК, во время острой ишемии миокарда имела место тенденция к снижению частоты встречаемости ФЖ и ПЖТ по сравнению с животными контрольной группы. Следовательно, данные исследования свидетельствуют о наличии антиаритмического эффекта феномена ДИПК у крыс с ГХЕ. Несмотря на то, что ДИПостК не оказывает влияние на нарушения сердечного ритма во время острой ишемии миокарда, продолжительность ишемических нарушений сердечного ритма в группе ДИПостК оказалась также меньше, чем у животных контрольной группы (р<0,05).

При воспроизведении феноменов ДИПК и ДИПостК у крыс без ГХЕ длительность аритмий во время острой коронарной ишемии в контрольной группе составила 230 (102; 302) сек, в группе ДИПК – 5 (0; 13) сек (р<0,05), в группе ДИПостК – 212 (99; 301) сек. Следовательно, у крыс без ГХЕ длительность аритмий во время острой коронарной ишемии в контрольной группе и группе ДИПостК сопоставима. Общая длительность ишемических нарушений ритма сердца в группе ДИПК значительно меньше, чем аналогичный показатель в контрольной группе (р<0,05), т.е. у крыс без ГХЕ антиаритмический эффект феномена ДИПК также воспроизводится.

Таким образом, антиаритмический эффект феномена ДИПК воспроизводится как у крыс с ГХЕ, так и у крыс без ГХЕ.

Несмотря на наличие тенденции к снижению размеров зоны риска в миокарде левого желудочка во всех группах крыс с ГХЕ по сравнению с крысами без ГХЕ, статистически значимых различий между анализируемыми группами крыс с ГХЕ и крыс без ГХЕ по данному показателю не выявлено (p>0,05). Таким образом, размеры зоны риска во всех группах крыс были сопоставимы (рис. 2).

На рис. З представлены размеры зоны некроза в миокарде левого желудочка во всех группах крыс с ГХЕ и крыс без ГХЕ. Средняя зона некроза в контрольной группе крыс с ГХЕ составила 38±4% (у крыс без ГХЕ - 44±5%). В группе крыс с ГХЕ, в которой воспроизводился феномен ДИПК, формировался сопоставимый с контрольной группой размер зоны некроза - 46±3% (у крыс без ГХЕ - 19±2%, p<0,01). В группе крыс с ГХЕ, в которой воспроизводился феномен ДИПостК, также отмечался сопоставимый с группой контроля размер зоны некроза - 43±6% (у крыс без ГХЕ - 20±3%, p<0,01).

Следовательно, данные исследования свидетельствуют об отсутствии противоишемического эффекта феноменов ДИПК и ДИПостК у крыс с ГХЕ. У крыс без ГХЕ, напротив, воспроизводится выраженный противоишемический эффект феноменов ДИПК и ДИПостК.

Согласно современным представлениям размер очага некроза в миокарде зависит от множества факторов, в частности от длительности ишемии миокарда, размера зоны

риска, температуры тела, состояния сосудистого русла, наличия сопутствующих заболеваний и нарушений обмена веществ, в том числе липидного обмена. В исследовании длительность ишемии миокарда и температура тела животных имели одинаковые значения во всех экспериментальных группах. Учитывая наличие тенденции к снижению размеров зоны риска в миокарде левого желудочка во всех группах крыс с ГХЕ по сравнению с крысами без ГХЕ, можно предполагать, что меньшие размеры зоны риска у крыс с ГХЕ способствовали формированию более низких значений размеров зоны некроза миокарда. Был проведен дополнительный расчет размеров зоны некроза миокарда в % от массы левого желудочка (рис. 4). В результате средняя зона некроза в контрольной группе крыс с ГХЕ составила $11,4\pm0,6\%$ (у крыс без ГХЕ – $18,5\pm0,8\%$). В группе крыс с ГХЕ, в которой воспроизводился феномен ДИПК, размер зоны некроза составил $12.8\pm0.7\%$ (у крыс без ГХЕ – $9.1\pm0.4\%$, p<0.01), а в группе крыс с ГХЕ, в которой воспроизводился феномен ДИПостК, - $14,3\pm0.7\%$ (у крыс без ГХЕ – $12,3\pm0.6\%$, p<0,01). Таким образом, в группах крыс с ГХЕ, в которых воспроизводились феномены ДИПК и ДИПостК, размеры зоны некроза также были сопоставимы с таковыми в контрольной группе, следовательно, есть основания полагать, что в данной ситуации размеры зоны риска в миокарде левого желудочка не оказывали существенного влияния на воспроизводимость противоишемического эффекта ДИПК и ДИПостК у крыс с ГХЕ. Учитывая непродолжительный период (10 дней) моделирования ГХЕ, маловероятно, что в стенке кровеносных сосудов крыс с ГХЕ произошли значимые морфологические изменения, связанные с вызванным нарушением липидного обмена. Кроме того, согласно литературным данным потребление крысами богатой холестерином пищи в течение длительного периода времени не приводит к развитию атеросклеротических изменений в сосудах [11].

Многочисленные экспериментальные исследования посвящены выявлению возможных причин отсутствия противоишемического эффекта феноменов локального ишемического пре- и посткондиционирования у экспериментальных животных с ГХЕ. При этом большинство авторов указывает на повреждение различных компонентов RISKкиназного пути (The Reperfusion Injury Salvage Kinase), который инициируется при стимуляции рецепторов, связанных с G-белком (GPCRs), и имеет важное значение в реализации кардиопротекторных эффектов феноменов локального ишемического пре- и посткондиционирования. В частности, отсутствие противоишемического эффекта ишемического посткондиционирования локального преживотных экспериментальной ГХЕ сопровождается существенным моделью снижением фосфорилирования киназы гликоген-синтазы 3β [25, 26], а также Akt (протеинкиназа В), ERK (Extracellular signal-regulated kinases), p70 рибосомальной S6 киназы (p70S6K) [26]. В тоже время уровень фосфорилирования данных киназ у животных с нормальным уровнем холестерола в сыворотке крови был существенно выше по сравнению с таковым у животных с ГХЕ.

Кроме того, в исследовании Sack M. et al. установлено, что при наличии ГХЕ у экспериментальных животных отсутствие противоишемического эффекта феноменов локального ишемического пре- и посткондиционирования может быть связано с нарушением синтеза монооксида азота (NO), который также имеет важное значение в реализации кардиопротекторных эффектов указанных феноменов [28]. В частности, при ГХЕ нарастающая митохондриальная дисфункция приводит к повышению оксидации тетрагидробиоптерина (ТГБП), что приводит к снижению его содержания в клетке. Потеря ТГБП, как молекулы-кофактора эндотелиальной NO-синтазы, приводит к значительному снижению активности данного фермента.

Таким образом, принимая во внимание общность механизмов реализации кардиопротекторных эффектов феноменов локального и дистантного ишемического преи посткондиционирования, повреждение RISK-киназного пути и нарушение синтеза NO могут объяснять отсутствие противоишемического эффекта феноменов ДИПК и ДИПостК у крыс с экспериментальной моделью ГХЕ.

Выводы

Феномены ДИПК и ДИПостК не эффективны в плане ограничения размеров зоны некроза в миокарде левого желудочка крыс с ГХЕ. В тоже время у крыс с ГХЕ воспроизводится выраженный антиаритмический эффект феномена ДИПК.

Табл. 1 Показатели гемодинамики (АДср., мм. рт. ст. и ЧСС, уд/мин) в контрольной группе и группах крыс, в которых воспроизводились феномены ДИПК и ДИПостК (крысы с гиперхолестеринемией и крысы без гиперхолестеринемии)

Группа		Контроль		дипк		ДИПостК	
Крысы с ГХЕ/без ГХЕ		Крысы с ГХЕ	Крысы без ГХЕ	Крысы с ГХЕ	Крысы без ГХЕ	Крысы с ГХЕ	Крысы без ГХЕ
До начала ОИМ	АД ср.	76±5	86±5	82±7	71±3	73±3	73±3
	ЧСС	424±16	417±9	463±14	397±7	456±11	410±16
Начало ОИМ	АД ср.	73±3	77±8	68±4	74±6	64±3	74±4
	ЧСС	425±12	439±6	468±12	405±15	433±19	429±14
Начало реперфузии	АД ср.	78±5	74±2	84±5 ¹	74±4	67±2 ¹	74±4
	ЧСС	446±25	413±16	481±13	420±18	441±18	410±23
30' реперфузии	АД ср.	83±7	74±4	87±7	78±5	72±4	75±4
	ЧСС	466±20	411±12	462±8	410±19	446±19	404±22
60' реперфузии	АД ср.	77±8	73±4	84±7	82±5	73±5	78±4
	ЧСС	433±13	413±15	457±7	414±17	467±24	410±22
90' реперфузии	АД ср.	71±6	78±3	70±4	75±6	69±6	77±4
	ЧСС	432±13	433±14	441±11	411±17	462±25	396±19
120' реперфузии	АД ср.	70±5	82±5	65±4	73±4	67±6	85±3
	ЧСС	434±10	436±20	436±11	417±14	435±19	426±16

 $^{^{1}}$ — статистически значимые отличия АДср. у крыс с гиперхолестеринемией в начале реперфузии между группами ДИПК и ДИПостК (p<0,01)

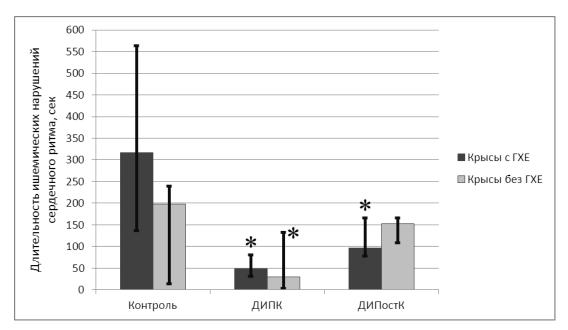


Рис. 1 Длительность нарушений сердечного ритма (в сек) во время 30-минутной коронарной окклюзии в контрольной группе и группах крыс, в которых воспроизводились феномены ДИПК и ДИПостК (крысы с гиперхолестеринемией и крысы без гиперхолестеринемии)

*- статистически значимые отличия длительности ишемических нарушений сердечного ритма у крыс с гиперхолестеринемией в группах ДИПК и ДИПостК, а также у крыс без гиперхолестеринемии в группе ДИПК по сравнению с контрольной группой (p<0,05).

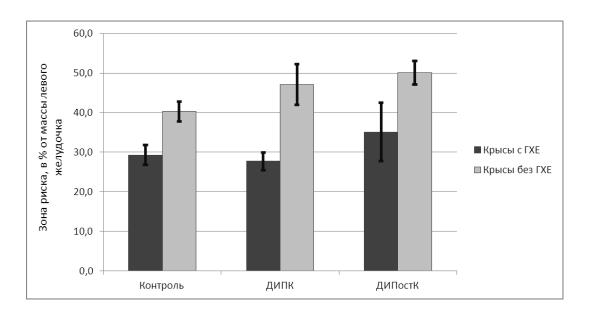


Рис. 2 Размеры зоны риска (в % от массы левого желудочка) в контрольной группе и группах крыс, в которых воспроизводились феномены ДИПК и ДИПостК (крысы с гиперхолестеринемией и крысы без гиперхолестеринемии)

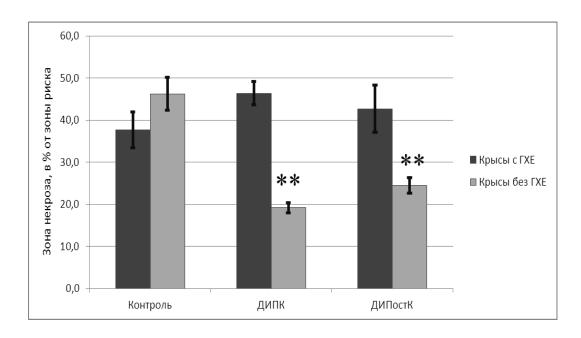


Рис. 3 Размеры зоны некроза (в % от зоны риска) в контрольной группе и группах крыс, в которых воспроизводились феномены ДИПК и ДИПостК (крысы с гиперхолестеринемией и крысы без гиперхолестеринемии)

**- статистически значимые отличия размеров зоны некроза в группах ДИПК и ДИПостК по сравнению с контрольной группой у крыс без гиперхолестеринемии (p<0,01).

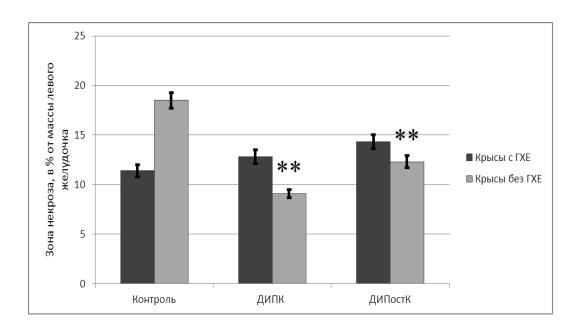


Рис. 4 Размеры зоны некроза (в % от массы левого желудочка) в контрольной группе и группах крыс, в которых воспроизводились феномены ДИПК и ДИПостК (крысы с гиперхолестеринемией и крысы без гиперхолестеринемии)

**- статистически значимые отличия размеров зоны некроза в группах ДИПК и ДИПостК по сравнению с контрольной группой у крыс без гиперхолестеринемии (p<0,01).

ЛИТЕРАТУРА

- 1. Мрочек А.Г. и др. Сердечно-сосудистые заболевания в Республике Беларусь: анализ ситуации и стратегии контроля. Минск: Беларус. навука, 2011. 341 с.
- 2. Ludman A.J., Yellon D.M., Hausenloy D.J. Cardiac preconditioning for ischaemia: lost in translation // Dis. Model Mech. 2010. Vol.3. p.35-38.
- 3. Hausenloy D.J., Yellon D.M. Preconditioning and postconditioning: new strategies for cardioprotection // Diabetes Obes. Metab. 2008. Vol.10(6). p.451-459.
- 4. Li J., Xuan W., Yan R., Tropak M.B. et al. Remote preconditioning provides potent cardioprotection via PI3K/Akt activation and is associated with nuclear accumulation of β -catenin // Clin. Sci. 2011. Vol.120(10). p.451-462.
- Basalay M., Barsukevich V., Mastitskaya S., Mrochek A. et al. Remote ischaemic pre- and delayed postconditioning – similar degree of cardioprotection but distinct mechanisms // Experimental Physiology. – 2012. – Vol.97(8). – p.908-917.
- 6. Magill P., Murphy T., Bouchier-Hayes D.J., Mulhall K.J. Preconditioning and its clinical potential // Ir. J. Med. Sci. 2009. Vol.178(2). p.129-134.
- Walsh S.R., Tang T.Y., Kullar P. et al. Ischaemic preconditioning during cardiac surgery: systematic review and meta-analysis of perioperative outcomes in randomised clinical trials // Eur. J. Cardiothorac. Surg. – 2008. – Vol.34(5). – p.985-994.
- 8. Schmidt M.R., Kristiansen S.B., Botker H.E. Remote ischemic preconditioning: no loss in clinical translation // Circ. Res. 2013. Vol.113(12). p.1278-80.
- 9. Cokkinos D.V., Pantos C. Myocardial protection in man from research concept to clinical practice // Heart Fail. Rev. 2007. Vol.12. p.345-362.
- Rezkalla S.H., Kloner R.A. Preconditioning in humans // Heart Fail. Rev. 2007. Vol.12.
 p.201-206.
- 11. Ferdinandy P., Schulz R., Baxter G. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning and postconditioning // Pharmacol. Rev. 2007. Vol.59. p.418-458.
- Tokuno S. et al. Spontaneous ischemic events in the brain and heart adapt the hearts of severely atherosclerotic mice to ischemia // Arterioscler. Thromb. Vasc. Biol. 2002. Vol. 22, №6. P. 995–1001.
- 13. Heusch G., Schulz R. Neglect of the coronary circulation: some critical remarks on problems in the translation of cardioprotection // Cardiovasc. Res. 2009. Vol.84(1). p.11–14.

- 14. Steensrud T., Li J., Dai X. et al. // Am. J. Physiol. Heart Circ. Physiol. 2010. Vol.299. p.1598-1603.
- 15. Hausenloy D.J., Mwamure P.K., Venugopal V. et al. // Lancet. 2007. Vol.370. p.575-579.
- 16. Szilvassy Z., Ferdinandy P. et al. The loss of pacing-induced preconditioning in atherosclerotic rabbits: role of hypercholesterolemia // J. Mol. Cell. Cardiol. 1995. Vol.27. p.2559-2569.
- 17. Ueda Y., Kitakaze M., Komamura K. et al. Pravastatin restored the infarct size-limiting effect of ischemic preconditioning blunted by hypercholesterolemia in the rabbit model of myocardial infarction // J. Am. Coll. Cardiol. 1999. Vol.34. p.2120-2125.
- 18. Iliodromitis E.K., Zoga A., Vrettou A. et al. The effectiveness of postconditioning and preconditioning on infarct size in hypercholesterolemic and normal anesthetized rabbits // Atherosclerosis. 2006. Vol.188. p.356-362.
- Kupai K., Csonka C., Bencsik P. et al. The cardioprotective effect of postconditioning is lost in cholesterol diet-induced hyperlipidemia in rats // J. Mol. Cell. Cardiol. – 2006. – Vol.40. – p.976-977.
- 20. Kremastinos D.T., Bofilis E., Karavolias G.K. et al. Preconditioning limits myocardial infarct size in hypercholesterolemic rabbits // Atherosclerosis. 2000. Vol.150. p.81-89.
- 21. Jung O., Jung W., Malinski T. et al. Ischemic preconditioning and infarct mass: the effect of hypercholesterolemia and endothelial dysfunction // Clin. Exp. Hypertens. 2000. Vol.22. p.165-179.
- 22. Osipov R.M., Bianchi C., Feng J. et al. Effect of hypercholesterolemia on myocardial necrosis and apoptosis in the setting of ischemia-reperfusion // Circulation. 2009. Vol.120. p.22-30.
- 23. Balakumar P., Rohilla A., Singh M. Preconditioning and postconditioning to limit ischemia-reperfusion-induced myocardial injury: what could be the next footstep? // Pharmacol. Res. 2008. Vol.57. p.403-412.
- 24. Maslov L.N., Mrochek A.G., Khaliulin I.G. et al. Adaptive phenomenon of ischemic postconditioning of the heart. Perspectives of clinical use // Vestn. Ross. Akad. Med. Nauk. 2013. №1. p.10-20.
- 25. Wu N., Zhang X., Guan Y. et al. Hypercholesterolemia abrogates the cardioprotection of ischemic postconditioning in isolated rat heart: roles of glycogen synthase kinase-3β and the mitochondrial permeability transition pore // Cell. Biochem. Biophys. 2014. Vol.69. p.123-130.

- 26. Pons S., Martin V., Portal L. et al. Regular treadmill exercise restores cardioprotective signaling pathways in obese mice independently from improvement in associated comorbidities // J. Mol. Cell. Cardiol. 2013. Vol.54. p.82-89.
- 27. D'Annunzio V., Donato M., Buchholz B. et al. High cholesterol diet effects on ischemia-reperfusion injury of the heart // Can. J. Physiol. Pharmacol. 2012. Vol.90. p.1185-1196.
- 28. Sack M., Murphy E. The role of co-morbidities in cardioprotection $/\!/$ J. Cardiovasc. Pharmacol. Ther. 2011. Vol.16. p.267-272.

УО «Белорусский государственный медицинский университет» 220116 Республика Беларусь, г. Минск, пр. Дзержинского, 83 +375 17 2726398, +375 29 6980237

Авторы:

Юшкевич Павел Францевич

(младший научный сотрудник лаборатории экспериментальной медицины, фармакологии и токсикологии НИЧ УО БГМУ)

Висмонт Франтишек Иванович

(заведующий кафедрой патологической физиологии УО БГМУ, д.м.н., член-корр. НАН Б)

Республиканский научно-практический центр «Кардиология» 220036, Республика Беларусь, г. Минск, ул. Р. Люксембург, 110 +375 17 207 37 62

Мрочек Александр Геннадьевич (директор РНПЦ «Кардиология», д.м.н., академик НАН Б)