МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ

Первый заместитель Министра Д.Л.Пиневич 2019 г. Регистрационный №055-0419

МЕТОДЫ ОЦЕНКИ ЧУВСТВИТЕЛЬНОСТИ-УСТОЙЧИВОСТИ БАКТЕРИЙ-ОППОРТУНИСТОВ К АНТИСЕПТИЧЕСКИМ ЛЕКАРСТВЕННЫМ СРЕДСТВАМ, ПРИМЕНЯЕМЫМ ДЛЯ ЛЕЧЕНИЯ МЕСТНЫХ ГНОЙНО-ВОСПАЛИТЕЛЬНЫХ ЗАБОЛЕВАНИЙ ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ

УЧРЕЖДЕНИЕ-РАЗРАБОТЧИК:

Учреждение образования «Белорусский государственный медицинский университет»

АВТОРЫ: к.м.н. доцент Скороход Г.А., к.м.н., доцент Гудкова Е.И., к.б.н.Циркунова Ж.Ф, Буткевич В.В., Слабко И.Н., к.м.н. доцент Канашкова Т.А., к.м.н. Чистый А.Г., Бердник Н.Н.

В настоящей инструкции по применению (далее - Инструкция) изложены методы оценки чувствительности-устойчивости бактерий-оппортунистов к антисептическим лекарственным средствам, применяемым для лечения гнойно-воспалительных заболеваний, местных который может использован в комплексе медицинских услуг, направленных на лечение заболеваний И патологических состояний, вызванных бактериямиоппортунистами, а гакже контроль за циркуляцией в госпитальной среде устойчивых вариантов бактерий.

Настоящая инструкция предназначена для врачей-бактериологов, врачейэпидемиологов, иных врачей-специалистов организаций здравоохранения,
оказывающих мелицинскую помощь пациентам с местными гнойновоспалительными процессами в стационарных и (или) амбулаторных условиях,
и (или) условиях отделения дневного пребывания, и (или) организаций
здравоохранения, осуществляющих государственный санитарный надзор.

ПОКАЗАНИЯ К ПРИМЕНЕНИЮ

Методы, изложенные в инструкции, предназначены для оценки чувствительности-устойчивости бактерий-оппортунистов к антисептическим лекарственным средствам, применяемым для лечения местных гнойновоспалительных заболеваний.

ПЕРЕЧЕНЬ НЕОБХОДИМЫХ МЕДИЦИНСКИХ ИЗДЕЛИЙ, РАСХОДНЫХ МАТЕРИАЛОВ И РЕАКТИВОВ

Оборудование и лабораторная посуда:

- паровой стерилизатор (автоклав);
- дистиллятор, обеспечивающий качество дистиллированной воды ГОСТ 6709-72;
- облучатель бактерицидный,
- шкаф ламинарный (бокс биологической защиты);
- холодильник с температурой в камере от $+4^{\circ}$ C до $+8^{\circ}$ C,
- термостат суховоздушный, поддерживающий температуру 35±2°C;
- рН-метр, диапазон рН от 1 до 14, точность 0,01 рН;
- весы аналитические с точностью 0,01-0,1 мг;
- вортекс-шейкер для микропробирок;
- автоматические дозаторы переменного объема 5-10 мл, 2-20 мкл; 100-1000мкл.
- стерильные чашки Петри, диаметр 90-100 мм;
- пробирки;
- штатив для пробирок;
- мерный цилиндо объемом 50 мл; 100 мл; 1л;
- микробиологические петли;
- горелка
- планшеты полимерные, 96-луночные, П-образные, стерильные, однократного применения;

- планшеты культуральные, полимерные, 24-луночные стерильные однократного применения;
- денситометр DEN 1B или аналог;

Питательные среды, эталонные штаммы, реактивы и расходные материалы:

- Эталонные штаммы: S. aureus ATCC 6538, E.coli ATCC 11229;
- Хлоргексидин биглюконат (Белмедпрепараты, РБ);
- Бетадин (повидон йод 10%)(ЭГИС, Венгрия);
- триптиказо-соевый бульон;
- стерильный 0,85% раствор хлорида натрия;
- редокс-индикатор ТТХ (трифенилтетразолий хлорид);
- твин 80;
- сапонин;
- L-гистидин;
- лецитин;
- цистеин;
- пептон основной;
- этиловый спирт.

ПРОТИВОПОКАЗАНИЯ ДЛЯ ПРИМЕНЕНИЯ

Отсутствуют.

1 ПОДГОТОВИТЕЛЬНЫЙ ЭТАП МЕТОДОВ

1. Приготовление питательной среды, нейтрализатора, инокулюма тест-культур

1.1 Приготовление питательной среды

Триптиказо-сое вый бульон (ТСБ) готовят из стандартной сухой питательной среды: 30г сухой питательной среды растворяют в 1л дистиллированной воды, доводят до кипения, разливают в стеклянные флаконы и автоклавируют при 120° С в течение 15 минут.

1.2 Приготовление раствора индикатора

Индикатор ТТХ 2-3-5 (трифенилтетразолий хлорид).

 $0,4~\Gamma$ TTX растворяют в 100,0~мл дистиллированной воды. Полученный 0,4% раствор, разливают в стеклянные флаконы и автоклавируют при 120° С в течение 10~минут.

1.3 Приготовление раствора универсального нейтрализатора антисептиков

Для нейтрализации антисептиков используют универсальный нейтрализатор, содержащий твин 80 (3%), сапонин (0,3%), гистидин (0,1%), лецитин (0,3%), пистеин (0,1%), пептон основной (1,0%). Раствор нейтрализатора доводят до рН 7,0 \pm 0,2 и стерилизуют паром при 1,1 атм. (121°C) 20 минут. Нейтрализатор хранят в холодильнике не более 14 суток.

1.4 Приготовление инокулюма

Для проведения исследования используют чистую культуру бактерий, выращенную в течение 18-24 часов на скошенном МПА при температуре $35\pm2^{\circ}$ С. Суспензии исследуемых тест-культур готовят смыванием физиологическим раствором с последующей стандартизацией по Мак Фарланд до 9.0×10^{8} КОЕ\мл (McFarland Standard 3.0).

2. МЕТОД ОЦЕНКИ ЧУВСТВИТЕЛЬНОСТИ-УСТОЙЧИВОСТИ ПЛАНКТОННЫХ КУЛЬТУР БАКТЕРИЙ-ОППОРТУНИСТОВ К АНТИСЕПТИКАМ ТЕРАПЕВТИЧЕСКОГО НАЗНАЧЕНИЯ

При оценке чувствительности-устойчивости используют стандартные аптечные формы антисептиков, применяемые в клинической практике.

2.1. Подготовка 96-луночной планшеты

После извлечения планшеты из стерильной упаковки проводят ее разметку. На крышке планшеты в горизонтальных рядах лунок обозначают названия антисептиков и их пошаговые двойные разведения, вертикальных рядах — номера исследуемых клинических изолятов, эталонных штаммов (Рисунок 1).

2.2. Приготовление разведений антисептиков

Согласно разметке в первые обозначенные горизонтальные ряды для определенного антисептика вносят по 300,0 мкл его разведения, выполненного в ТСБ в соотношении 1/2, а в расположенные ниже ряды — по 150,0 мкл ТСБ. Затем, из лунок с исходными разведениями забирают по 150,0 мкл содержимого с последующим последовательным перенесением данного объема в нижние ряды лунок для получения разведений 1/4, 1/8, 1/16 и т.д. Из лунок с последним разведением часть содержимого, в объеме 150,0 мкл, удаляют.

2.3. Проведение исследования

В вертикальные ряды лунок с разведениями антисептиков вносят по 30,0 мкл стандартизованной суспензии тест-культур. Планшеты закрывают крышкой и помещают в термостат при 37°C на 18-24 часа.

После извлечения планшет из термостата во все лунки вносят по 30,0 мкл 0,4% раствора ТТХ с повторным помещением в термостат на 3-4 часа.

2.4. Учет результатов

Учет результатов производят по изменению цвета среды. Окрашивание среды в красный или бордовый цвет свидетельствует о жизнеспособности бактерий и, следовательно, устойчивости тест-культуры к данному разведению антисептика. То последнее разведение антисептика, при котором не происходит изменения цвета среды, является максимальным ингибирующим разведением (МИР) для исследуемой тест-культуры.

При исследовании средств, имеющих интенсивную окраску, например, бриллиантовый зеленый, фукорцин, вместо индикации роста культуры по изменению цвета ТТХ, необходимо использовать высев из лунок с разведениями антисептика на плотные питательные среды.

2.5. Определение бактерицидной активности антисептиков

После учета результатов определения МИР, при необходимости, можно установить наличие и степень максимального бактерицидного разведения (МБР). Для этого, в ряды лунок с неизмененным цветом среды вносят по 50,0 мкл. универсального нейтрализатора. После перемешивания, содержимое лунок высевают по 20,0 мкл на чашки Петри с плотной питательной средой (МПА). Учет результатов проводят после суточной инкубации чашек при 37°C. Наличие роста в зоне посева свидетельствует о бактериостатической активности, отсутствие – о бактерицидной.

2.6. Контроли

2.6.1 Контроль культуры (КК), положительный контроль

В лунки с 150,0 мкл ТСБ вносят 30,0 мкл стандартизованной исследуемой тест-культуры, а затем 30,0 мкл 0,4% раствора ТТХ. Изменение цвета среду свидетельствует о жизнеспособности тест-культуры.

2.6.2 Контроль питательной среды (КС), отрицательный контроль

В лунки с 150,0 мкл ТСБ (без внесения тест-культуры), вносят 30,0 мкл 0,4% раствора ТТХ. Отсутствие изменение цвета свидетельствует об отсутствии контаминации среды.

2.6.3 Контроль достоверности полученных результатов

Для контроля результатов чувствительности-устойчивости используют значения МИР (Таблица 1), полученные на эталонных штаммах *S. aureus* и *E. coli*.

Таблица 1 - Контрольные значения МИР для планктонных культур

Антисептик	Значение МИР		
	S. aureus	E.coli	
ХГ	64-128	64-128	
Бетадин	8-16	4-8	

При получении значений МИР, не выходящих за пределы контрольных, указанных в таблице, можно выполнять учет результатов

2.7. Показатели чувствительности-устойчивости бактерий:

МИР (максимальное ингибирующее разведение). МИР соответствует максимальному разведению антисептика от его рабочей концентрации при котором отмечается ингибирование роста исследуемой культуры;

МБР (максимальное биоцидное разведение). МБР соответствует максимальному разведению антисептика от его рабочей концентрации, при котором отмечается полная гибель исследуемой культуры;

МИР₁₀₀ (максимальное ингибирующее разведение) при котором отмечается ингибирование роста всех тест-культур определенного вида.

Чем больше величины МИР и МБР, тем активнее при прочих равных условиях антисептическое средство или чувствительнее культура.

3. МЕТОД ОЦЕНКИ ЧУВСТВИТЕЛЬНОСТИ-УСТОЙЧИВОСТИ БИОПЛЕНОЧНЫХ КУЛЬТУР БАКТЕРИЙ-ОППОРТУНИСТОВ К АНТИСЕПТИКАМ ТЕРАПЕВТИЧЕСКОГО НАЗНАЧЕНИЯ

3.1. Подготовка 24-луночной планшеты

После извлечения планшеты из стерильной упаковки выполняют её разметку. На крышке планшеты в горизонтальных рядах обозначают названия антисептиков и степень их разведения, в вертикальных - исследуемые клинические изоляты бактерий, эталонные штаммы (рисунок 2).

3.2. Формирование биопленочных культур бактерий

Для формирования биопленок бактерий во все ряды лунки планшеты вносят по 700,0 мкл ТСБ с последующим добавлением согласно разметке по 70,0 мкл стандартизованных по Мак Фарланд до 9,0х10⁸ КОЕ/мл (McFarland Standard 3,0) 24 часовых исследуемых тест-культур бактерий. Планшеты закрывают крышкой и на двое суток помещают в термостат при 37⁰С для формирования бактериальных биопленок.

3.3. Приготовление разведений антисептиков

Используют стандартные аптечные формы антисептиков, применяемые в клинической практике. Разведения антисептиков готовят вне планшет после формирования биопленочных культур на момент их внесения, на ТСБ, в объемном соотношении, начиная с разведения 1/2.

3.4. Проведение исследований

Спустя двое суток инкубации планшеты извлекают из термостата. Из всех лунок, автоматической пипеткой, с обязательной сменой наконечников для каждой тест-культуры, удаляют надосадочную среду. Визуально убеждаются в формировании микробных биопленок на дне лунок. После чего, согласно протоколу исследования и разметке планшеты в лунки вносят по 1000,0 мкл разведений определенного антисептика. Планшету повторно помещают в термостат на одни сутки.

После извлечения планшет из термостата, из лунок, с обязательной сменой наконечников для каждой, аспирируют антисептик с последующим внесением в них по 1000,0 мкл ТСБ. Планшеты на 2-3 часа помещают в термостат. После извлечения из термостата во все лунки вносят по 50,0 мкл 0,4% ТТХ, планшеты помещают в термостат на 2-3 часа.

3.5. Учет результатов

Учет результатов производят по изменению цвета среды. Окрашивание среды в красный или бордовый цвет свидетельствует о жизнеспособности бактерий и, следовательно, неэффективности антисептика в данном разведении. То последнее разведение антисептика, при котором не происходит изменения цвета среды, является максимальным ингибирующим разведением (МИР) для исследуемой биопленочной тест-культуры.

При исследовании средств, имеющих интенсивную окраску, например, бриллиантовый зеленый, фукорцин, вместо индикации роста культуры по

изменению цвета ТТХ, необходимо использовать высев из лунок с разведениями антисептика на плотные питательные среды.

3.6. Определение бактерицидной активности

При определении бактерицидной активности антисептиков, т.е. максимального бактерицидного разведения (МБР), в ряды лунок с исходным цветом среды вносят по 500,0 мкл универсального нейтрализатора, и после перемешивания, из содержимого лунок по 20,0 мкл высевают на плотные питательные среды. Учет результатов проводят после суточной инкубации чашек при 37°C. Наличие роста в зоне посева свидетельствует о бактериостатической активности, отсутствие — о бактерицидной.

3.7. Контроли

3.7.1. Контроль биопленочной культуры (КК), положительный контроль

В лунки с биопленочной культурой, вместо антисептика, вносят по 1000,0 мкл ТСБ с последующим внесением 50,0 мкл ТТХ. Изменение цвета среды свидетельствует о жизнеспособности биопленочной культуры.

3.7.2. Контроль чувствительности-устойчивости биопленочных культур бактерий

Для контроля результатов чувствительности-устойчивости используют значения МИР (Таблица 2), полученные на эталонных штаммах S. aureus и E.coli.

Таблица 2 - Контрольные значения МИР для биопленочных культур

Антисептик	Значение МИР			
	S. aureus	E.coli		
ХΓ	8-16	4-8		
Бетадин	8	8		

При получении значений МИР, не выходящих за пределы контрольных, указанных в таблице, можно выполнять учет результатов

Изоляты S. aureus

Антисептикі	и	№ 1	Nº2	2 № 3	3	•••	К	онт	роли	ı
Хлоргексидин	32	0	©	(3)	3	(3)	(3)	0	3	KK1
	64	0			0	③	(1)	(3)	②	КК2
	128	0	(1)	0		(3)	0	(3)	0	
Мукосанин	32	0	(3)	0	0	③	1	0	0	КС
	64	(3)	(3)	0	3	(1)	3	0	(1)	
	128	(3)	(1)	3	0	0	(1)		(
Бетадин	4	(6)	(39)	((3)		③	③	0	
	8	•	0	0	(1)	(3)	0	0	0	
	16	0	0	0	0	1	0	0	@	
Хиндиокс	2	(3)	(3)	3	(3)	(0	0	0	
	4	0	0	0	0	(3)	0	0	0	
	8	®	0	((3)	0	(3)	0	0	

Рисунок 1. Пример разметки 96-луночной планшеты при оценке чувствительности устойчивости планктонной культуры.

Примечание:

К1 – контроль культуры №1;

К2 – контроль культуры №2;

КС – контроль питательной

среды.

Изоляты S. aureus

Антисептики	Изолят № 1	Изолят №2				
Хлоргесидин	2 4 8	2 4 8				
Бетадин	4 8 16	4 8 16				
Бр. зеленый	4 8 16	4 8 16				
Мукосанин	2 4 8	2 4 8				

Рисунок 2. Пример разметки 24-луночной планшеты при оценке чувствительности-устойчивости биопленочной культуры.