
Тестовый самоконтроль по теме «Химическая кинетика и катализ»

1.	Скорость химической реакции можно выразить: а) моль· π^{-1} · c^{-1} б) л·моль ⁻¹ в) с·моль ⁻¹ г) моль· π^{-1} ·мин ⁻¹ ?	
2	, , , , , , , , , , , , , , , , , , , ,	
2.	Скорость простой химической реакции с увеличением времени ее протекания	
2	а) увеличивается; b) уменьшается; c) не изменяется d) изменяется неоднозначно; Установите соответствие между физической величиной и факторами, от которых она зависит:	
3.	а) скорость гомогенной реакции 1) природа реагирующих веществ	
	а) скорость гомогенной реакцииреагирующих веществконцентрация реагирующих веществ	
	с) константа скорости реакции 3) температура	
	4) давление (для газов)	
	4) давление (для газов) 5) катализатор	
1	6) степень раздробленности исходного вещества	
4.	Математическое выражение для скорости химической реакции, идущей в одну стадию по схеме $A_{(r)}$ +	
	${\bf 2B_{(r)}} \rightarrow {\bf C_{(r)}}$, описывается уравнением: a) ${\bf v} = {\bf k}[{\bf A}][2{\bf B}];$ b) ${\bf v} = {\bf k}[{\bf A}][{\bf B}]^2;$ c) ${\bf v} = {\bf k}[{\bf A}][2{\bf B}]^2;$ d) ${\bf v} = {\bf k}[{\bf B}]^2;$	
5.		
э.	Выберите правильные утверждения. Константа скорости химической реакции:	
	a) имеет смысл числа активных соударений в уравнении Аррениуса;	
	б) в физическом смысле это - удельная скорость химической реакции:	
	в) чем больше, тем интенсивно протекает реакция;	
	г) тем больше, чем больше энергия активации.	
6.	По механизму химической реакции сложные реакции делят:	
	а) на последовательные б) параллельные	
7	в) гетерогенные г) на сопряженные	
7.	Соотнесите тип реакции с ее определением:	
	а) последовательные 1) частицы, образующиеся в каждой стадии,	
	б) параллельные генерируют свободные радикалы	
	в) сопряженные 2) продукт одной реакции является исходным	
	г) цепные веществом другой реакции	
	3) из одних и тех же исходных веществ образуются	
	разные продукты	
0	4) одна реакция не может идти без другой	
8.	В цепных реакциях выделяют стадии:	
	а) диффузия реагирующих веществ к межфазной поверхности	
	б) развитие цепи	
	в) отвод продуктов реакции от межфазной поверхности	
	г) обрыв цепи	
^	д) инициирование	
9.	Скорость гомогенной реакции, протекающей в несколько стадий, следующих одна за другой	
	определяется скоростью:	
	а) первой стадии; б) заключительной стадии;	
10	в) самой быстрой стадии; г) самой медленной стадии	
10.	В гетерогенных реакциях выделяют стадии:	
	а) диффузия реагирующих веществ к межфазной поверхности	
	б) развитие цепи	
	в) отвод продуктов реакции от межфазной поверхности	
	г) химическая реакция	
11.	Гетерогенная реакция протекает в кинетической области. Это значит, что	
	а) скорость реакции значительно превышает скорость диффузии реагирующих веществ;	
	б) диффузионные процессы протекают значительно быстрее, чем сама химическая реакция;	
	в) скорости всех стадий (диффузии реагирующих веществ, отвод продуктов от межфазной поверхности	
	хим. реакция) гетерогенного процесса соизмеримы;	
	г) ее скорость определяется кинетическим уравнением реакции;	
12.	Порядок и молекулярность совпадают для реакций:	
	а) сложных; b) простых; c) последовательных; d) параллельных;	
13.	Если один из реагентов, участвующих в бимолекулярной реакции, взят в большом избытке, то	
	порядок реакции:	
	a) будет равен молекулярности; b) будет меньше молекулярности;	
	c) будет больше молекулярности; d) будет определяться по веществу, взятому в избытке;	
	е) будет определяться по веществу, взятому в недостатке.	
14.	Численное значение константы скорости и скорости реакции совпадают для реакций	
	a) первого порядка	

b) второго порядка при равной концентрации реагирующих веществ;

с) любого порядка при концентрации реагентов, ра		
d) протекающих в одну стадию (простых) реакций		
15. Для реакции какого порядка период полупревращо	-	
) третьего;	
16. Укажите методы определения мгновенной скорости	преакции:	
а) графический метод б) метод подстановки		
в) прямые г) косвенные		
д) метод Освальда (метод избытка)		
17. Укажите методы определения порядка реакции:		
а) прямые б) метод подстановки		
в) косвенные г) графический метод		
д) метод Освальда (метод избытка)		
18. Для некоторой реакции первого порядка при $C_0 = 1$		
Период полупревращения (с) данной реакции при	$C_0 = 2$ моль/л равен:	
a) 500 c; b) 250 c; c) 1000 c; d) 2000 c;	·	
19. Чтобы при уменьшении концентрации вещества В		
одну стадию в соответствии с уравнением 2А + В —	→ С, не изменилась, концентрацию вещества А	
необходимо увеличить		
a) в 4 раза; b) в 2 раза; c) в $\sqrt{2}$ раза; d) в 8 раз	· ·	
20. К моменту времени t, когда скорость реакции, про-		
концентрации А и Б равны), уменьшится в 10 раз н	сонцентрации реагирующих веществ уменьшатся	
a) B 10 pas; b) B 100 pas; c) B $\sqrt{10}$ pas; d) B 5 p		
21. При данной температуре реакция омыления эфира		
заканчивается через 2 часа. Если исходную смесь р		
а) 50 часов; b) 25 часов; c) 10 часов; d) 100 час		
22. Зависимость скорости химической реакции от тем		
а) Аррениуса b) Вант-Гоффа с) Гульдберга-В		
23. Повышение скорости химической реакции при уве		
а) с уменьшением энергии активации	личении температуры связано.	
а) с уменьшением энергии активацииб) изменением теплового эффекта реакции;		
в) увеличением числа и доли активных частиц		
в) увеличением числа и доли активных частицг) с увеличением энергии активации		
24. При 20 ⁰ С две реакции протекают с одинаковой ско	постио том, – у. Если томноротурний	
коэффициент скорости первой реакции равен трем	ростью, т.е. v ₁ — v ₂ . Если температурный	
скоростей v ₂ /v ₁ будет равно	, а второи - четырем, то при 40 С отношение	
a) 4/3; b) 3/4; c) 16/9; d) 32/27;		
25 Hnu tempenatyne ynahenug 25 ⁰ C r tegenuu 6 mecan	ев пазлагается X г пепекиси воловола. Установите	
25. При температуре хранения 25 ⁰ C в течении 6 месяцев разлагается X г перекиси водорода. Установите в течении какого времени (сутки) разлагается та же масса вещества, если температуру хранения		
увеличить до 45° C, $\gamma = 3$	с масса вещества, сели температуру хранения	
26. При температуре 50° С скорость первой реакци	и павна 0.16 моль/п·с. а втопой - 0.09 моль/п·с	
Температурный коэффициент первой реакции равен 3, а второй - 4. Укажите значение температуры,		
при которой скорости обеих реакций будут одинак		
27. Если энергия активации первой реакции E_1 =80 кДж/моль, а второй E_2 = 160 кДж/моль, то для		
температурных коэффициентов скоростей реакций γ_1 и γ_2 выполняется соотношение:		
a) $\gamma_1 > \gamma_2$ b) $\gamma_1 < \gamma_2$ c) $\gamma_1 = \gamma_2$	1 1 12 bandinaeren coornomenne.	
28. Для графического определения значения энерги	и активации в уравнении Аррениуса необходимо	
построить график в координатах:	п иктивиции в уравнении търренијей необходимо	
a) $k_v = f(T)$ b) $\ln k_v = f(T)$ b) $\ln k_v = f(1/2)$	T) \mathbf{r} $\mathbf{k}_{v} = \mathbf{f} (1/T)$	
a) ny 1 (1) b) m ny 1 (1)	E_a	
29. Установите соответствие между множителями и	$k_{v} = p \cdot Z \cdot e^{-\overline{RT}}$	
29. Установите соответствие между множителями і	з уравнении Аррениуса 🗀 и их	
физическим смыслом:	1\	
$e^{-\frac{La}{RT}}$	1) теоретическое число двойных соударений;	
	2) стерический фактор, учитывающий	
a) 7		
6) $p \cdot Z$	благоприятную ориентацию молекул в момент	
$6) \stackrel{p \cdot Z}{\bullet} \frac{-\frac{E_a}{RT}}{}$	благоприятную ориентацию молекул в момент двойного соударения	
a) $e^{-\frac{E_a}{RT}}$ 6) $p \cdot Z$ B) $p \cdot Z \cdot e^{-\frac{E_a}{RT}}$	благоприятную ориентацию молекул в момент двойного соударения 3) число активных соударений;	
	благоприятную ориентацию молекул в момент двойного соударения 3) число активных соударений; 4) доля активных соударений от общего числа	
$_{\mathbf{r})}^{p}$	благоприятную ориентацию молекул в момент двойного соударения 3) число активных соударений; 4) доля активных соударений от общего числа благоприятных двойных соударений	
	благоприятную ориентацию молекул в момент двойного соударения 3) число активных соударений; 4) доля активных соударений от общего числа благоприятных двойных соударений 5) общее число двойных соударений с учетом их	
$_{\mathbf{r})}^{p}$	благоприятную ориентацию молекул в момент двойного соударения 3) число активных соударений; 4) доля активных соударений от общего числа благоприятных двойных соударений	

30. Установите соответствие между множителями в уравнении ТПК

физическим смыслом: ΔS≠ ΔH^{\neq}

$$\mathbf{b}) p \cdot e^{\frac{\Delta S^{7}}{R}}$$

- 1) число активных комплексов, разлагающихся за единицу времени в единице объема
- 2) множитель, имеющий физ. смысл предэспоненты (А) в уравнении Аррениуса
- 3) величина, имеющая физ. смысл энергии
- активации в уравнении Аррениуса.
- 4) константа химического равновесия образования
- характеризующий стерический множитель, вероятность образования ПК.

31. Повышение скорости реакции при введении в систему катализатора обусловлено:

- а) уменьшением энергии активации;
- **b)** изменением теплового эффекта реакции;
- с) увеличением кинетической энергии молекул
- **d**) возрастанием числа столкновений молекул;

32. Неверным является утверждение, что ферменты...

- а) резко снижают энергетические барьеры реакций;
- **b)** их ферментативная активность не зависит от величины рН;
- с) обладают селективностью действия;
- d) катализируют химические реакции гораздо эффективнее, чем любые искусственные катализаторы.