Рубрикация коллоквиума по предмету «Общая химия»

для студентов стоматологического, лечебного и военно-медицинского факультетов, МФИУ

Задачи и уравнения химических реакций

- 1. Способы приготовления растворов. Способы выражения состава раствора.
- 2. Реакции комплексообразования.
- 3. Титриметрический анализ.
- 4. Окислительно-восстановительные процессы. Метод электронно-ионного баланса.
- 5. Коллигативные свойства растворов.
- 6. Основы химической термодинамики.
- 7. Теория активных соударений Аррениуса.
- 8. рН в водных растворах.
- 9. рН в буферных растворах.
- 10. Строение частиц коллоидных растворов.

Теоретические вопросы

- 11. Теоретические основы титриметрического метода анализа.
- 12. Осмос и осмотическое давление.
- 13. рН физиологических жидкостей.
- 14. Буферные системы организма.
- 15. Гетерогенные равновесия.
- 16. Законы термодинамики.
- 17. Электрохимия.
- 18. Поверхностные явления.
- 19. Коллоидные растворы.
- 20. Растворы белков.

Ниже приведены 9 вариантов с заданиями, аналогичными, но не идентичными таковым на коллоквиуме.

- 1. Найдите массу Na₂CO₃·10H₂O, которая необходима для приготовления 60 мл раствора карбоната натрия с молярной концентрацией 0,03 моль/л. Чему будет равна молярная концентрация карбоната натрия в растворе такого же объёма, приготовленного путём растворения в воде такой же массы безводной соли?
 - 2. Напишите реакцию комплексообразования в молекулярной и ионной форме: AgCl + NH₃ \rightarrow
- 3. Раствор щавелевой кислоты оттитровали с помощью 0,1М раствора гидроксида натрия в присутствии фенолфталеина. На титрование 10 мл раствора щавелевой кислоты ушло 15,2 мл раствора титранта. Найдите нормальность раствора щавелевой кислоты. Найдите молярную концентрацию щавелевой кислоты.
- 4. Закончите окислительно-восстановительную реакцию и расставьте коэффициенты в ней методом электронно-ионного баланса (методом полуреакций):

$$KNO_2 + KMnO_4 + H_2SO_4 \rightarrow$$

- 5. Температура замерзания раствора, приготовленного путём растворения 5 г HNO_2 в 100 г воды, равна -2,02°C. Рассчитайте константу диссоциации азотистой кислоты, если плотность полученного раствора равна 1,03 г/мл. Криоскопическая константа воды равна 1,86 $K \cdot \kappa \Gamma / MOJ$ ь.
- 6. Определите ΔH^0_r реакции между сероводородом и кислородом (взят в избытке). ΔH^0_f (H₂S) = -20,6 кДж/моль, ΔH^0_f (SO₂) = -296,8 кДж/моль, ΔH^0_f (H₂O) = -285,8 кДж/моль.
- 7. Во сколько раз повысится скорость реакции при повышении температуры от 20 до 80°С, если предэкспоненциальный множитель в уравнении Аррениуса остался прежним, а энергия активации равна 50 кДж/моль.
- 8. pK плавиковой кислоты (HF) равен 3,17. Найдите pH в растворе плавиковой кислоты с массовой долей HF, равной 5%. Плотность раствора равна 1,02 г/мл.
- 9. Определите рН в растворе, полученном в результате добавления 10 мл 0,05М раствора NaOH к 50 мл 0,1М раствора уксусной кислоты. pK для уксусной кислоты равно 4,75.
- 10. Напишите схему строения мицеллы золя, полученного при сливании 10 мл 0,1M раствора NaCl и 50 мкл 0,1M раствора AgNO $_3$.

11. Вещество, с использованием которого определяют концентрацию титранта	перед
титрованием, называется	
12. Наибольший вклад в осмотическое давление плазмы крови вносят катионы	•
13. рН желудочного сока в норме находится в пределах:	
14. Для эффективного поддержания рН на уровне 7,4 подходит б	уфер.
15. Осадок будет выпадать при сливании двух растворов, если значение произг	
активных концентраций ионов образующегося при этом малорастворимого соедин	іения в
степенях, равных их коэффициентам в уравнении диссоциации,	
термодинамической константы растворимости.	
16. Уравнение Больцмана, отражающее статистическую трактовку 2-го	закона
термодинамики:	
17. Наибольшей подвижностью в водном растворе отличаются катионы	
18. Приведите 2 примера поверхностно-активных веществ.	
19. Приведите 2 отличительных свойства коллоидного раствора от истинного.	

20. Заряд белка c pI=5,5 в растворе c pH=7,4 будет

- 1. Чему равна мольная доля (%) этанола в растворе, полученном путём добавления 30 мл C_2H_5OH (плотность этанола 0,79 г/мл) к воде объёмом 250 мл (плотность воды 1,00 г/мл). Определите моляльность (моль/кг) полученного раствора.
 - 2. Напишите реакцию комплексообразования в молекулярной и ионной форме: $Fe_2(SO_4)_3 + KCN \rightarrow$
- 3. Раствор, содержащий ионы Fe^{2+} , оттитровали с помощью 0,02н раствора перманганата калия в присутствии серной кислоты. На титрование 10 мл исходного раствора ушло 8,3 мл раствора титранта. Найдите молярную концентрацию ионов железа в растворе. Рассчитайте, какая масса железа находится в 100 мл исходного раствора.
- 4. Закончите окислительно-восстановительную реакцию и расставьте коэффициенты в ней методом электронно-ионного баланса (методом полуреакций):

 $KI + KMnO_4 + H_2SO_4 \rightarrow I_2 + ...$

- 5. Температура кипения раствора, приготовленного путём растворения 5 г НСООН в 100 г воды, равна 100,58°С. Рассчитайте константу диссоциации муравьиной кислоты, если плотность полученного раствора равна 1,01 г/мл. Эбуллиоскопическая константа воды равна 0,53 К⋅кг/моль.
- 6. Рассчитайте ΔG^0_r реакции взаимодействия аммиака с хлороводородом, если $\Delta G^0_f(HC1)$ =-94,8 кДж/моль, $\Delta G^0_f(NH_3)$ =-16,7 кДж/моль, $\Delta G^0_f(NH_4C1)$ =-203,2 кДж/моль.
- 7. Во сколько раз повысится скорость реакции при повышении температуры от 30 до 70°С, если предэкспоненциальный множитель в уравнении Аррениуса остался прежним, а энергия активации равна 150 кДж/моль.
- 8. Определите потенциальную кислотность желудочного сока (моль/л), если рН в нём составил 2,2, а на потенциометрическое титрование 10 мл этой жидкости ушло 7,2 мл 0,1М раствора NaOH.
- 9. Определите pH в растворе, полученном в результате добавления 20 мл 0.01М раствора KOH к 30 мл 0.02М раствора молочной кислоты. pK молочной кислоты (CH₃CH₂OHCOOH) равен 3.86.
- 10. Напишите схему строения мицеллы золя, полученного при сливании 20 мл 0,1M раствора $BaCl_2$ и 40 мкл 0,05M раствора Na_2SO_4 .
- 11. Способ титрования, в котором титрант непосредственно реагирует с веществом, концентрацию которого необходимо определить, называется ______.

 12. Наибольший вклад в осмотическое давление внутриклеточной жидкости вносят катионы .
 - 13. рН крови в норме находится в пределах: ______.
- 14. Наибольший вклад в поддержание постоянства рН в эритроцитах вносят две взаимодействующие буферные системы: _______.
- 15. Осадок не будет выпадать при сливании двух растворов, если значение произведения активных концентраций ионов образующегося при этом малорастворимого соединения в степенях, равных их коэффициентам в уравнении диссоциации, ______ термодинамической константы растворимости.
- 16. Неравенство Клаузиуса, отражающее термодинамическую трактовку 2-го закона термодинамики:
 - 17. Наибольшей подвижностью в водном растворе отличаются анионы .
 - 18. Приведите 2 примера поверхностно-инактивных веществ.
 - 19. Приведите границы размеров частиц в коллоидных растворах.
 - 20. Заряд белка с pI=10,2 в растворе с pH=7,4 будет ______.

- 1. Найдите объём раствора соляной кислоты (массовая доля HCl в нём равна 15%, плотность раствора 1,073 г/мл), который необходим для приготовления 250 мл разбавленного раствора соляной кислоты с молярной концентрацией 0,01 моль/л (плотность раствора 1,000 г/мл). Во сколько раз уменьшится массовая доля HCl в результате разбавления?
 - 2. Напишите реакцию комплексообразования в молекулярной и ионной форме: $Al_2(SO_4)_3 + NaOH$ (изб.) \rightarrow
- 3. Раствор гидроксида калия оттитровали с помощью 0,1н раствора серной кислоты в присутствии фенолфталеина. На титрование 20 мл раствора гидроксида калия ушло 13,7 мл раствора титранта. Найдите молярность раствора гидроксида калия. Какая масса серной кислоты (чистого вещества) ушла на титрование?
- 4. Закончите окислительно-восстановительную реакцию и расставьте коэффициенты в ней методом электронно-ионного баланса (методом полуреакций):

 $FeSO_4 + K_2Cr_2O_7 + H_2SO_4 \rightarrow$

- 5. Осмотическое давление раствора масляной кислоты равно 284,35 кПа при 25°С. В растворе объёмом 200 мл содержится 2 г кислоты. Рассчитайте константу диссоциации масляной кислоты.
- 6. Рассчитайте ΔS^0_r для реакции между алюминием и разбавленной серной кислотой. $S^0(Al)=28,35$ Дж/моль·К, $S^0(H_2SO_4)=156,9$ Дж/моль·К, $S^0(Al_2(SO_4)_3)=239,2$ Дж/моль·К, $S^0(H_2)=130,6$ Дж/моль·К.
- 7. Во сколько раз снизится скорость реакции при уменьшении температуры от 30 до 0°C, если предэкспоненциальный множитель в уравнении Аррениуса остался прежним, а энергия активации равна 220 кДж/моль.
- 8. рК гидроксида аммония (NH₄OH) равен 4,75. Найдите рН в растворе с массовой долей гидроксида аммония, равной 6%. Плотность раствора равна 0,98 г/мл.
- 9. Определите pH в растворе, полученном в результате добавления 20 мл 0.1М раствора NaOH к 40 мл 0.15М раствора муравьиной кислоты. pK для муравьиной кислоты = 3.75.
- 10. Напишите схему строения мицеллы золя, полученного при сливании 25 мл 0,1M раствора $SrCl_2$ и 40 мкл 0,03M раствора Na_2CO_3 .

18. Изобразите изотерму адсорбции Ленгмюра.

19. Размер коллоидной частицы влияет на ______ устойчивость.

20. Наименее устойчивым к высаливанию белок будет при рН, равном

- 1. Чему равна мольная доля (%) аммиака в растворе, полученном путём растворения 2 л NH₃ (н.у.) в воде объёмом 200 мл (плотность воды 1,00 г/мл). Определите моляльность (моль/кг) полученного раствора.
 - 2. Напишите реакцию комплексообразования в молекулярной и ионной форме: $Hg(NO_3)_2 + KI$ (изб.) \rightarrow
- 3. К 10 мл раствора, содержащего дихромат-ионы ($Cr_2O_7^{2-}$), добавили раствор, содержащий избыток йодида калия. После окончания реакции оттитровали полученный раствор 0,01 н раствором тиосульфата натрия. На титрование ушло 5,3 мл титранта. Найдите нормальность исходного раствора. Рассчитайте, какая масса дихромата калия находится в 200 мл исходного раствора.
- 4. Закончите окислительно-восстановительную реакцию и расставьте коэффициенты в ней методом электронно-ионного баланса (методом полуреакций):

 $KNO_2 + KMnO_4 + KOH \rightarrow$

- 5. После растворения 230 г органического вещества в 300 мл воды (плотность равна 1 г/мл) давление пара над раствором снизилось на 0,2 кПа. Давление пара над чистой водой при той же температуре равно 3,17 кПа. Найдите молярную массу вещества.
- 6. Рассчитайте ΔG^0_r реакции образования супероксида калия при стандартных условиях, если ΔH^0_r =-280 кДж/моль, а ΔS^0_r =-229,29 Дж/моль·К.
- 7. Во сколько раз снизится скорость реакции при уменьшении температуры от 70 до 10° С, если предэкспоненциальный множитель в уравнении Аррениуса остался прежним, а энергия активации равна 20 кДж/моль.
- 8. Коэффициент активности серной кислоты в данном растворе равен 0,87. Найдите рН в 300 мл такого раствора с массовой долей H_2SO_4 , равной 0,5%. Плотность раствора равна 1,0 г/мл.
- 9. Чему равна буферная ёмкость фосфатного буфера, если при добавлении 2 мл соляной кислоты с молярной концентрацией HCl 0.05 моль/л к 50 мл такого раствора его pH изменился на 0.2 единицы.
- 10. Напишите схему строения мицеллы золя, полученного при сливании 15 мл 0,05М раствора КОН и 20 мкл 0,02М раствора MgCl₂.
 11. В йодометрии в качестве индикатора используют ________.
 12. Та часть осмотического давления плазмы крови, которая обусловлена белками, называется _______.
 13. Состояние, при котором рН в крови снижается за счёт накопления кислых продуктов метаболизма, называется _______.
 14. При добавлении основания к раствору белка происходит ______.
 аминогрупп и карбоксильных групп, заряд белка становится более ______.
 15. Растворится ли осадок йодида серебра при добавлении раствора аммиака в пробирку с равновесной системой: AgI(тв) ↔ Ag⁺ + I⁻?
- 16. Уравнение, связывающее константу равновесия и ΔG при достижении химического равновесия:
 - 17. Схема стандартного водородного электрода: ______.
 - 18. Изобразите изотерму полимолекулярной адсорбции (БЭТ).
- 19. Золь с положительно заряженными гранулами имеет наименьший порог коагуляции при воздействии ионов с наиболее ______ зарядом.
 - 20. Наименьшую степень набухания белок будет проявлять при рН, равном

- 1. Какой объем (н.у.) аммиака нужно пропустить через 150 г его раствора с массовой долей NH_3 2,35 % для получения раствора с молярной концентрацией аммиака 7 моль/дм³ (ρ = 0,948 г/см³)?
- 2. Напишите молекулярное и ионное уравнения реакции взаимодействия сульфата кобальта (II) с избытком гидроксида аммония и дайте название комплексному соединению.
- 3. Рассчитайте массу Na_2CO_3 в растворе, если на его титрование в присутствии метилоранжа израсходовано 15 мл 0,2 н раствора H_2SO_4 .
- 4. Закончите окислительно-восстановительную реакцию и расставьте коэффициенты в ней методом электронно-ионного баланса (методом полуреакций):

$$KNO_2 + KMnO_4 + H_2O \rightarrow$$

- 5. Раствор соли ($\omega_{\text{соли}} = 1,5\%$), при диссоциации которой образуется четыре иона, кристаллизуется при температуре (-0,69°C). Определите молярную массу этой соли. Кажущаяся степень диссоциации соли равна 0,75. Криоскопическая константа воды равна 1,86 К·кг/моль.
- 6. Вычислите энтальпию образования кристаллогидрата (энтальпию гидратации) по реакции $MgSO_{4(\kappa)}$ + $7H_2O_{(\pi)}$ = $MgSO_4\cdot 7H_2O_{(\kappa)}$, если энтальпии растворения в воде кристаллогидрата $MgSO_4\cdot 7H_2O$ и безводной соли $MgSO_4$ соответственно равны +16,14 кДж/моль и -85,06 кДж/моль.
- 7. В системе $2SO_{2(r)} + O_{2(r)} \rightleftharpoons 2SO_{3(r)}$ установилось равновесие. Равновесная концентрация SO_3 равна 0,20 моль/дм³. Определите равновесную концентрацию (моль/дм³) кислорода, если известно, что к моменту установления равновесия прореагировало 60^{-9} 6 начального химического количества кислорода.
 - 8. Рассчитайте ионную силу и коэффициент активности 0,001M раствора CaCl₂.
- 9. К 1 л буферного раствора, содержащего по 1 моль Na_2HPO_4 и NaH_2PO_4 , добавили 0,07 моль NaOH. Чему равен pH раствора после добавления щелочи (pK (H_2PO_4) = 6,8)
- 10. Напишите схему строения мицеллы золя, полученного при сливании 10 мл 0,02 м раствора $K_2Cr_2O_7$ и 15 мкл 0,01м раствора $AgNO_3$.
- 11. Приведите два примера веществ, которые используются в качестве первичных стандартов в методе нейтрализации 12. Приведите формулу растворов для расчета осмотического давления электролитов 13. Кислотность, равная активности (концентрации) свободных ионов водорода в растворе называется 14. Образуется ли буферная система при сливании водных растворов: 100 мл 0,2 м раствора NH₄OH и 100 мл 0,3 м раствора HCl 15. Для малорастворимого сильного электролита Ag₂SO₄ термодинамическая константа растворимости рассчитывается по формуле:
- 16. Запишите математическое выражение второго закона термодинамики для необратимых процессов_____
- 17. Напишите процессы, которые протекают на электродах в серебряно-медном гальваническом элементе
- 18. Если число капель водного раствора, вытекающего из сталагмометра, меньше числа капель воды, то растворенное вещество является______
- 19. Расположите катионы Mg^{2+} , K^+ , Fe^{3+} в порядке увеличения коагулирующей способности
- 20. Расположите в ряд по увеличению высаливающего действия на растворы ВМС следующие электролиты: CH₃COONa, Na₂SO₄, NaCNS

- 1. Какой объем (н.у.) аммиака нужно пропустить через 500 см 3 его раствора с молярной концентрацией 1,1 моль/дм 3 ($\rho = 0.990 \text{ г/см}^3$) для получения раствора с массовой долей NH $_3$ 20%?
- 2. Напишите молекулярное и ионное уравнения реакции взаимодействия гидроксида меди (II) с избытком гидроксида аммония и дайте название комплексному соединению.
- 3. Рассчитайте массу Na_2CO_3 в растворе, если на его титрование в присутствии метилоранжа израсходовано 22,5 мл 0,182 н раствора H_2SO_4 .
- 4. Закончите окислительно-восстановительную реакцию и расставьте коэффициенты в ней методом электронно-ионного баланса (методом полуреакций):

$$H_2C_2O_4 + KMnO_4 + H_2SO_4 \rightarrow$$

- 5. Раствор соли ($\omega_{\text{соли}} = 2,0\%$), при диссоциации которой образуется три иона, кристаллизуется при температуре (-0,889°C). Определите молярную массу этой соли. Кажущаяся степень диссоциации соли равна 0,8. Криоскопическая константа воды равна 1,86 К·кг/моль.
- 6. Вычислите энтальпию образования кристаллогидрата (энтальпию гидратации) по реакции $CuSO_{4(\kappa)} + 5H_2O_{(\varkappa)} = CuSO_4$ $5H_2O_{(\kappa)}$, если энтальпии растворения в воде кристаллогидрата $CuSO_4$ $5H_2O$ и безводной соли $CuSO_4$ соответственно равны +11,7 кДж/моль и -66,1 кДж/моль.
- 7. В закрытом сосуде смешали 8 моль оксида серы (IV) и 4 моль кислорода. К моменту наступления равновесия прореагировало 80 % первоначального количества оксида серы (IV). Определите состав равновесной газовой смеси (об. %) и ее плотность по воздуху.
- 8. Рассчитайте ионную силу и коэффициент активности 0,002 м раствора сульфата калия.
- 9. К 1 л буферного раствора, содержащего по 0.1 моль NH_4OH и NH_4Cl , добавили 0.01 моль HCl. Чему равен pH раствора после добавления кислоты (pK (NH_4OH) = 4.75).
- 10. Напишите схему строения мицеллы золя, полученного при сливании 10 мл 0,02 м раствора $K_2Cr_2O_7$ и 15 мкл 0,01м раствора $AgNO_3$.
- 14. Образуется ли буферная система при сливании водных растворов: 200 мл 0,2 м раствора NH₄OH и 100 мл 0,3 м раствора HCl_____
- 15. Для малорастворимого сильного электролита PbI_2 термодинамическая константа растворимости рассчитывается по формуле:
- 16. Запишите математическое выражение второго закона термодинамики для обратимых процессов_____
- 17. Напишите процессы, которые протекают на электродах в медно-цинковом гальваническом элементе_____
- 18. Если число капель водного раствора, вытекающего из сталагмометра, больше числа капель воды, то растворенное вещество является______
- 19. Расположите анионы NO_3^- , PO_4^{3-} , SO_4^{2-} в порядке увеличения коагулирующей способности
- 20. Миозин мышц (ИЭТ=5,0) растворен в буферных растворах с рН 2,0; 4,7; 5,0; 9,6. В каком из растворов степень набухания белка наименьшая ?

- 1. Сколько граммов $Na_2B_4O_7\cdot 10H_2O$ следует взять для приготовления 250 мл 0,1000н раствора (fэкв. = 1/2, $M(Na_2B_4O_7\cdot 10H_2O)$ = 381,4 г/моль)?
 - 2. Напишите реакцию комплексообразования в молекулярной и ионной форме

$$KCN + Mn(CN)_2 \rightarrow$$
.

- 3. На титрование 0,0244г $H_2C_2O_4\cdot 2H_2O$ израсходовано 19,5 мл раствора $KMnO_4$. Вычислите молярную концентрацию эквивалента раствора $KMnO_4$.
- 4. Закончите окислительно-восстановительную реакцию и расставьте коэффициенты в ней методом полуреакций:

$$HI + H_2SO_4 \rightarrow H_2S + ...$$

- 5. Раствор, содержащий 1,2 г аспирина HOOC $C_6H_4OCOCH_3$ в 20 г диоксана, замерзает при температуре $10,43^{0}C$. Определите криоскопическую константу диоксана. Температура замерзания диоксана равна $12^{0}C$
 - 6. Вычислить ΔH_{r}^{0} реакции между оксидом меди (II) и углеродом.

$$\Delta H_{\,\mathrm{f}}^{\,0}(\mathrm{CuO}) = -37.1\,\,$$
кДж/моль, $\Delta H_{\,\mathrm{f}}^{\,0}(\mathrm{CO}) = -\,26.4\,\,$ кДж/моль

- 7. Чему равен температурный коэффициент, Вант Гоффа если при нагревании реакционной смеси на 20^{0} С скорость реакции увеличилась в 9 раз ?
- 8. Как изменится pH среды при добавлении 30 мл 0.2 M раствора гидроксида натрия к 300 мл воды.
- 9. Для муравьиной кислоты $Ka = 1,8 \cdot 10^{-4}$. Какое значение имеет степень диссоциации и концентрация ионов водорода в растворе кислоты при молярной концентрации C=0,1 моль/дм³
- 10. Напишите схему строения мицеллы золя, полученного при сливании 150 мл 0,1 М раствора сульфида аммония и 1 мл 0,1М раствора хлорида железа II.
- 11. Для определения окислителей в перманганатометрии используют метод ______
 титрования.
 12. Изотоничными крови являются раствор хлорида натрия с массовой долей или
- раствор глюкозы с массовой долей ______ 13. По значению pH биологической жидкости можно определить кислотность
 - 14. Какие буферные системы поддерживают постоянство рН крови?
- 15. Если произведение концентраций ионов, образующих малорастворимый сильный электролит будет больше K_s^0 , то произойдет ______ осадка
- 16. Самопроизвольно в изолированной системе протекают процессы, которые приводят к возрастанию ______(параметр).
 - 17. Уравнение потенциала хлорсеребряного электрода
- 18. Величина электротермодинамического потенциала зависит от количества_____
 - 19. Уравнение Фрейндлиха хорошо описывает процесс адсорбции лишь для значений давлений или концентраций.
- 20. К какому электроду будут двигаться частицы белка при электрофорезе, если ИЭТ его 4,0, а pH раствора 5,0?

- 1. Плотность 40% -го (по массе) раствора HNO_3 равна 1,25 г/мл. Рассчитать молярную концентрацию и моляльность этого раствора.
- 2. Написать молекулярное и ионное уравнения реакции взаимодействия сульфата меди (II) с избытком аммиака и дать название комплексному соединению.
- 3. На титрование 10,0 мл раствора NaOH пошло 20,0 мл 0,1M раствора HCl. Сколько граммов гидроксида натрия содержится в 500 мл анализируемого раствора?
- 4. Закончите окислительно-восстановительную реакцию и расставьте коэффициенты в ней методом эектронно-ионного баланса (методом полуреакций):

$$KMnO_4 + H_2S + H_2SO_4 \rightarrow S + \dots$$

5. В 1 мл раствора содержится $10^{18}\,$ молекул растворенного вещества не электролита. Вычислите осмотическое давление раствора при 298 К.

$$R = 8.31 \, \text{Дж/моль} \cdot \text{К}.$$

- 6. Вычислить тепловой эффект растворения безводной соли $CuSO_4(\kappa)$, если тепловой эффект растворения кристаллогидрата $CuSO_4 \cdot 5H_2O(\kappa)$ равен -11,94 кДж, а теплота гидратации безводной соли при переходе ее в кристаллогидрат равна 78,5 кДж.
- 7. В состоянии равновесия реакции $2SO_2(\Gamma) + O_2(\Gamma) \rightleftarrows 2SO_3(\Gamma)$ концентрации SO_2 , O_2 и SO_3 (моль/л) соответственно равны 0,4; 0,2 и 0,8. Укажите значения исходных концентраций SO_2 и O_2 .
- 8. Рассчитайте pH 0,01 M раствора NH₄OH при температуре 298 K, если степень диссоциации гидроксида аммония равна 0,042
- 9. К 1 л буферного раствора, содержащего по 0,1 моль HCOOH и HCOONа, добавили 0,04 моль NaOH. Чему равен pH раствора после добавления щелочи (pK (HCOOH) = 3,75):
- 10. Золь сульфата бария получен при сливании избытка раствора хлорида бария с раствором серной кислоты. Напишите схему строения мицеллы полученного золя.
- 11. Напишите формулу вещества, которое используется в качестве первичного стандарта, для стандартизации растворов щелочей.
- 12. Укажите компоненты плазмы крови, которые вносят основной вклад в распределение воды между сосудистым руслом и внесосудистым пространством
 - 13. В каких пределах изменяется рН мочи здорового человека?
- 14. Какая из буферных систем вносит основной вклад в величину буферной емкости плазмы крови?
 - 15. Напишите формулу основного минерального компонента костной ткани
- 16. Назовите вид процесса, при котором энергия, сообщенная системе в форме теплоты, равна изменению внутренней энергии системы
- 17. Как изменяется электрическая проводимость раствора при титровании уксусной кислоты сильным основанием?
- 18. Как изменится поверхностное натяжение при растворении в воде поверхностно-активного вещества?
- 19. Расположите анионы SO_4^{2-} Cl^- , PO_4^{3-} в порядке увеличения коагулирующей способности_____
- 20. Желатин с ИЭТ = 4,7 помещен для набухания в растворы с pH = 3,0; 4,7; 5,0 и 6,5. В каком из растворов степень набухания:
 - а) наименьшая
- б) наибольшая?

- 1. Плотность 15 % го (по массе) раствора H_2SO_4 равна 1,105 г/мл. Вычислить молярную концентрацию эквивалента и моляльность этого раствора. $f_{_{2KB.}} = 1/2$.
- 2. Написать молекулярное и ионное уравнения реакции взаимодействия хлорида цинка с избытком цианида натрия и дать название комплексному соединению.
- 3. Сколько граммов КОН содержится в 300 мл раствора, если на титрование 20,00 мл этого раствора расходуется в среднем 18,40 мл 0,09234 М раствора HNO₃?
- 4. Закончите окислительно-восстановительную реакцию и расставьте коэффициенты в ней методом эектронно-ионного баланса (методом полуреакций):

$$KMnO_4 + KI + H_2O \rightarrow I_2 + ...$$

5. Вычислите молярную массу не электролита, если известно, что температура замерзания раствора, содержащего 4,94 г этого вещества в 500 г воды, понизилась на 0,102 градуса

$$(K(H_2O) = 1,86 \text{ кг} \cdot \text{град/моль})$$

6. Рассчитайте значение ΔG_r^0 реакции и определите возможность ее осуществления в стандартных условиях: $SO_2(\Gamma) + 2 H_2 S(\Gamma) = 3 S(T) + 2 H_2 O(\pi)$

$$\Delta G_f^0(SO_2)\!\!=\!-300,\!4\ кДж/моль \ \Delta G_f^0(H_2O)\!\!=\!-237,\!3\ кДж/моль \ \Delta G_f^0(H_2S)\!\!=\!\!-33$$
 кДж/моль

- 7. Для гомогенной реакции, протекающей в объеме равном 3 л, количество вещества реагента за 5 секунд изменилось с 5 до 2 моль. Укажите среднее значение скорости реакции по этому реагенту.
- 8. Рассчитайте pH 0.1М раствора уксусной кислоты, если степень ее диссоциации равна 0.9%?
- 9. Ацетатный буферный раствор с концентрацией каждого компонента 0,1 моль/л имеет pH равный 4,75. Чему равна буферная емкость (моль/л·ед.pH) для данного раствора, если при добавлении к 1 л его 20 мл 1М раствора HCl pH буфера стал равен 4,665.
- 10. Золь бромида серебра получен при сливании избытка раствора нитрата серебра с раствором бромида натрия. Напишите схему строения полученного золя.
- 11. Какой индикатор следует использовать для фиксирования точки эквивалентности при титровании FeSO₄ раствором KMnO₄ в кислой среде.
 - 12. Какие компоненты вносят основной вклад в осмотическое давление плазмы крови:
 - 13. В каких пределах изменяется рН крови в организме здорового человека:
- 14. Какая из буферных систем вносит основной вклад в величину буферной емкости эритроцитов?
- 15. Для малорастворимого сильного электролита $Ca_3(PO_4)_2$ термодинамическая константа растворимости рассчитывается по формуле:_____
 - 16. Записать математическое уравнение первого закона термодинамики _____
- 17. Как изменяется удельная электрическая проводимость желудочного сока при гиперкислотности?
- 18. Если число капель водного раствора, вытекающего из сталагмометра, меньше числа капель воды, то в растворе находится:
- 19. Как изменится устойчивость золя фосфата кальция при добавлением к нему раствора белка?
- 20. Изоэлектрическая точка γ-глобулина равна 6,4. К какому электроду будет перемещаться белок при электрофорезе в буферном растворе с pH равным 4,7?

Критерии оценки

За задачи и уравнения реакций (1-10) – по 7 баллов.

Всего за решение задач – максимум 70 баллов.

За ответы на вопросы (11-20) – по 3 балла.

Всего за ответы на вопросы – максимум 30 баллов.

В случае участия в деятельности студенческого научного кружка (доклад на заседании кружка или на конференции) и/или в случае, если средний балл по текущим контрольным работам равен или превышает 9,5, студент освобождается от ответов на практические вопросы коллоквиума.

Шкала оценок

Баллы	Оценка
0 – 29	1
30 –39	2
40 – 49	3
50 – 54	4
55 – 59	5
60 – 69	6
70 – 79	7
80 – 89	8
90 – 99	9
100	10

Структура коллоквиума и критерии оценки утверждены на заседании кафедры общей химии. Протокол №1 от 29.08.2019 г.

Зав. кафедрой общей химии

Xpm,

В.В. Хрусталёв