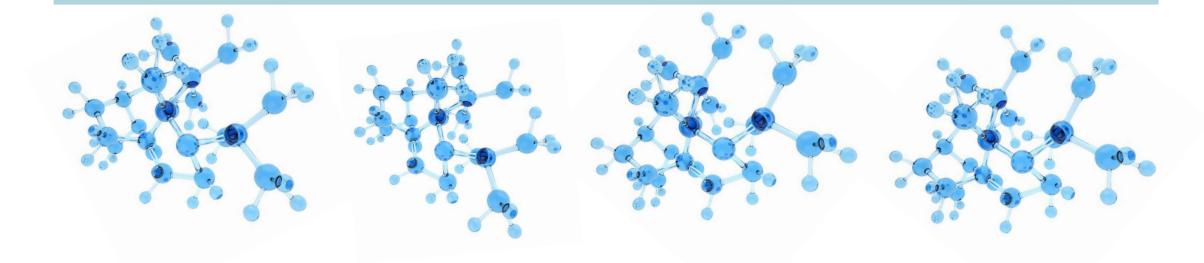
Белорусский государственный медицинский университет, г. Минск


IN SILICO ПОИСК ПОТЕНЦИАЛЬНЫХ ИНГИБИТОРОВ ГЕПАРАНАЗЫ (Q9Y251)

Кафедра фармакологии
Табакова Д. В., Терлецкая В. А.
З курс, фармацевтический факультет
Научный руководитель ассист. Кашкур Ю.В.

Цель: поиск новых ингибиторов гепараназы на основе построенной модели фармакофора

Задачи:

- 1) Провести скрининг соединений, обладающих сродством к гепараназе;
- 2) Базируясь на центроидных молекулах, построить модель фармакофора;
- 3) На основе построенного фармакофора найти потенциальные ингибиторы гепараназы, обладающие удовлетворительными фармакокинетическими параметрами.

Материалы и методы.

✓Данные для построения модели фармакофора были получены из баз данных Protein Data Bank и ChEMBL DB;

✓ Скрипты, для обработки и кластеризации данных были написаны на языке программирования Python;

✓Построение фармакофора осуществлялось с помощью PharmaGist webserver;

✓ Поиск новых соединений осуществлялся в базе данных ZINC 12 с помощью веб ресурса ZINCPharmer.

Результаты и их обсуждение.

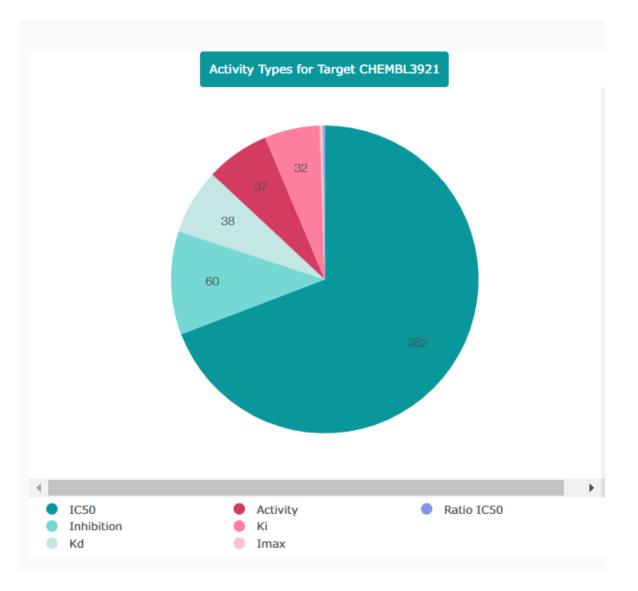
Для построения модели фармакофора использовалось *504* ингибитора гепараназы, найденные в базе данных **ChEMBL**

Molecule ChEMBL \$ ID	Compound \$\\$Key	Standard 🕏	Standard Relation	Standard 🕏 Value	Standard Units	pChEMBL \$	Comment \$	Assay ChEMBL \$ ID	Assay Description
CHEMBL197295	46	IC50	=	3981.07	nM	5.40	No Data	CHEMBL990587	Inhibition of heparanase
CHEMBL112739	20	IC50	=	4466.84	nM	5.35	No Data	CHEMBL990587	Inhibition of heparanase
CHEMBL200554	12	Inhibition	<	10.0	%	No Data	No Data	CHEMBL869913	Inhibitory acti against heparanase fro human platele at 0.83 uM
CHEMBL192463	44	IC50	=	1513.56	nM	5.82	No Data	CHEMBL990587	Inhibition of heparanase

Активность молекул определялась на основе значений **IC50**.

```
data = pd.read_csv('Data.csv')

data.pivot_table(index = ['standard_type'], aggfunc='size')


standard_type
IC50     172
dtype: int64

data = data.query("standard_type == 'IC50'")

data.head()
```

molecule chembl id Smiles standard type s COc1ccc(C(=O)Nc2ccc(CNc3ccc(-CHEMBL200215 IC50 c4nc5ccccc5[nH]4)... CCCOc1ccc(C(=O)Nc2ccc(-IC50 CHEMBL199576 c3nc4cccc4[nH]3)cc2)cc1Br COc1ccc(NC(=O)/C=C/c2ccc(-IC50 CHEMBL194140 c3nc4cc(CC(=O)O)ccc4... O=C(O)Cc1ccc2oc(-3 CHEMBL194231 IC50 c3ccc(/C=C/C(=O)Nc4ccc(Br)cc4... COc1ccc(NC(=O)/C=C/c2ccc(-IC50 CHEMBL196338 c3nc4cc(CC(=O)O)ccc4...

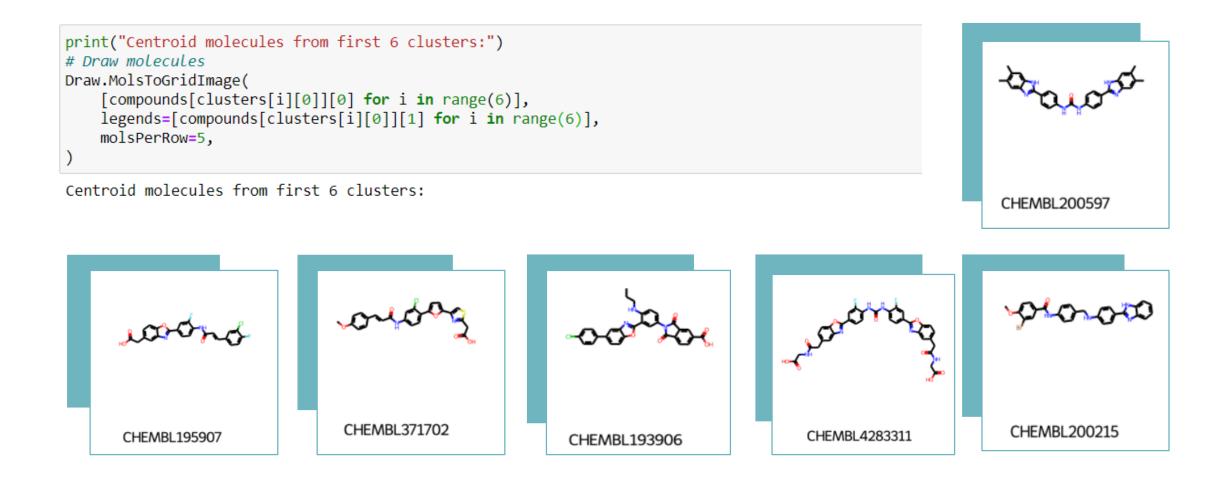
Associated Bioactivities

Для удобства использования значения IC50 были конвертированы в **pIC50**.

```
def calcPic50(st_values):
   for i in range(0, len(st values)):
        st_values[i] = st_values[i]*10**-9
        st_values[i] = round(-np.log10(st_values[i]), 3)
   return st values
st_val = list(data['standard_value'])
pic50 vals = calcPic50(st val)
data['pIC50'] = pic50 vals
```

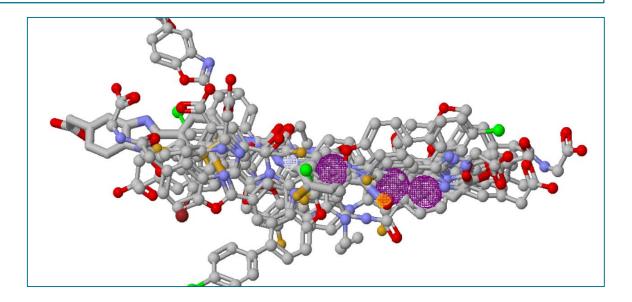
data.head()

	molecule_chembl_id	Smiles	standard_type	standard_value	standard_units	assay_type	assay_organism	target_organism	pIC50
0	CHEMBL200215	COc1ccc(C(=O)Nc2ccc(CNc3ccc(-c4nc5ccccc5[nH]4)	IC50	230.0	nM	В	Homo sapiens	Homo sapiens	6.638
1	CHEMBL199576	CCCOc1ccc(C(=O)Nc2ccc(-c3nc4ccccc4[nH]3)cc2)cc1Br	IC50	2200.0	nM	В	Homo sapiens	Homo sapiens	5.658
2	CHEMBL194140	COc1ccc(NC(=O)/C=C/c2ccc(-c3nc4cc(CC(=O)O)ccc4	IC50	3000.0	nM	В	Homo sapiens	Homo sapiens	5.523
3	CHEMBL194231	O=C(O)Cc1ccc2oc(-c3ccc(/C=C/C(=O)Nc4ccc(Br)cc4	IC50	400.0	nM	В	Homo sapiens	Homo sapiens	6.398
4	CHEMBL196338	COc1ccc(NC(=O)/C=C/c2ccc(- c3nc4cc(CC(=O)O)ccc4	IC50	450.0	nM	В	Homo sapiens	Homo sapiens	6.347


Активными считались соединения со значением **pIC50 ≥ 6.0**. Их количество составило *65*.

data = data.query("pIC50 >= 6.0")

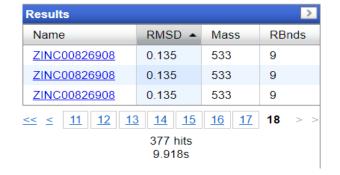
data		head	()
-	•		•	,


	molecule_chembl_id	Smiles	standard_type	standard_value	standard_units	assay_type	assay_organism	target_organism	pIC50
0	CHEMBL200215	COc1ccc(C(=O)Nc2ccc(CNc3ccc(-c4nc5cccc5[nH]4)	IC50	230.0	nM	В	Homo sapiens	Homo sapiens	6.638
1	CHEMBL194231	O=C(O)Cc1ccc2oc(-c3ccc(/C=C/C(=O)Nc4ccc(Br)cc4	IC50	400.0	nM	В	Homo sapiens	Homo sapiens	6.398
2	CHEMBL196338	COc1ccc(NC(=O)/C=C/c2ccc(- c3nc4cc(CC(=O)O)ccc4	IC50	450.0	nM	В	Homo sapiens	Homo sapiens	6.347
3	CHEMBL196336	O=C(O)Cc1nc(-c2ccc(-c3ccc(NC(=O)/C=C/c4ccc(OC(IC50	600.0	nM	В	Homo sapiens	Homo sapiens	6.222
4	CHEMBL196826	O=C(O)Cc1ccc2oc(- c3ccc(NC(=O)/C=C/c4cccc(Br)c4	IC50	750.0	nM	В	Homo sapiens	Homo sapiens	6.125
60	CHEMBL200597	Cc1cc2nc(-c3ccc(NC(=O)Nc4ccc(-c5nc6cc(C)c(C)cc	IC50	560.0	nM	В	Homo sapiens	Homo sapiens	6.252
61	CHEMBL4291586	O=C(O)Cc1ccc2[nH]c(- c3ccc(NC(=O)Nc4ccc(-c5nc6c	IC50	980.0	nM	В	Homo sapiens	Homo sapiens	6.009
62	CHEMBL4290499	CC(NC(=O)Cc1ccc2oc(-c3ccc(NC(=O)Nc4ccc(-c5nc6c	IC50	370.0	nM	В	Homo sapiens	Homo sapiens	6.432
63	CHEMBL4283311	O=C(O)CNC(=O)Cc1ccc2oc(-c3ccc(NC(=O)Nc4ccc(-c5	IC50	450.0	nM	В	Homo sapiens	Homo sapiens	6.347
64	CHEMBL4280766	CC(=O)N[C@H]1[C@@H] (O[C@@H]2C(C(=O)O)O[C@@H] (O	IC50	5.0	nM	В	Homo sapiens	Homo sapiens	8.301

Далее с помощью алгоритма кластеризации **Butina** наиболее структурно схожие соединения были объединены в **6** кластеров, из которых были отобраны **6** центроидных молекул.

С помощью **PharmaGist** webserver на основе 4-х молекул была построена модель фармакофора. Фармакофор представляет собой **6** фармакофорных центров:

- ▶1 донор водорода,
- ▶2 акцептора водорода,
- ➤ 3 ароматических цикла.


Ph	Pharmacophore Filters Viewer Submit Query								
	Pharmacophore Class	х	у	Z	Radius	Enabled			
>	HydrogenDonor	-2.76	0.38	0.00	0.50	✓	•		
>	HydrogenAcceptor	10.51	0.44	0.65	0.50	✓	•		
>	HydrogenAcceptor	3.32	-1.92	0.60	0.50	✓	•		
>	Aromatic	5.96	-1.53	0.17	1.10	✓	_		
>	Aromatic	3.90	-1.07	0.13	1.10	✓	•		
>	Aromatic	0.01	-0.18	0.03	1.10	✓	_		

Results								
Name	RMSD -	Mass	RBnds					
ZINC02384699	0.729	489	6					
ZINC09274463	0.721	488	8					
ZINC08592990	0.721	461	5					
ZINC40399157	0.713	392	5					
ZINC40267303	0.713	378	4					
ZINC40398886	0.713	410	5					
ZINC32093915	0.713	364	3					
ZINC40399061	0.713	363	3					
ZINC40399020	0.702	420	6					
ZINC40398982	0.702	382	8					
ZINC40399054	0.702	337	5					
ZINC40285420	0.702	352	6					
ZINC32105588	0.702	338	5					
ZINC40399148	0.702	366	7					
ZINC40398871	0.702	384	7					
ZINC40399032	0.685	453	4					
ZINC40398929	0.685	431	6					
ZINC40398882	0.685	417	5					
ZINC40399009	0.685	415	6					
ZINC40399059	0.683	392	4					
ZINC36359488	0.683	393	4					
ZINC40399024	0.683	476	5					
<< < 1 2 3 4 5 6 7 8 > >>								

377 hits 9.918s Для поиска новых соединений в базе данных ZINC 12 использовался веб-сервер **ZINCPharmer**.

В результате было найдено **377** потенциальных ингибиторов гепараназы в диапазоне значений RMSD *0,729 – 0,135*.

RMSD – root-meansquare deviation (среднеквадратичное отклонение)

Соединения были отобраны в соответствии с правилом Липинского.

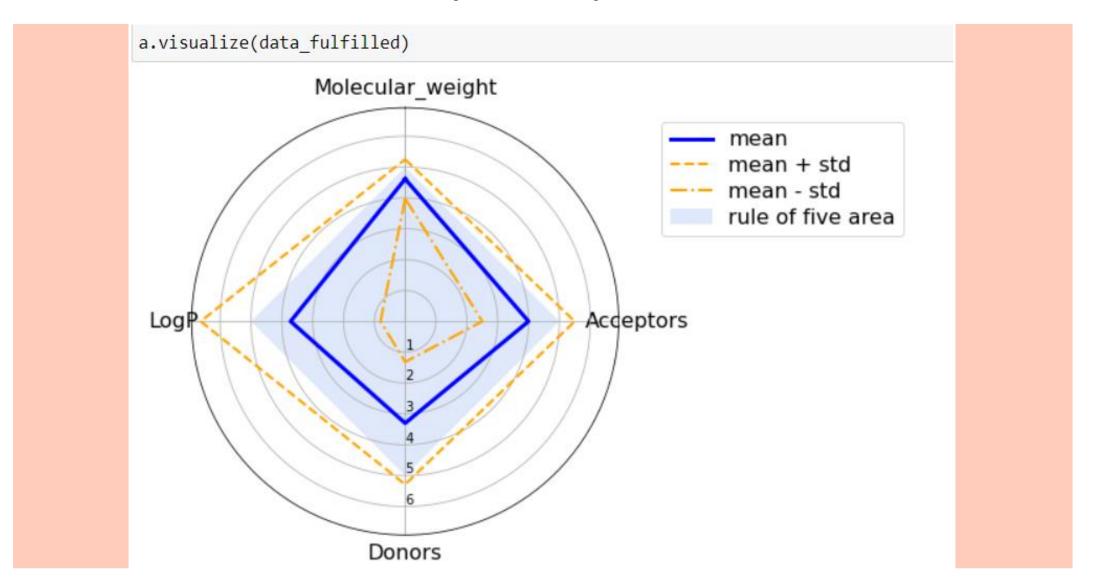
Lipinski Filter

```
smiles = list(data['smiles'])
a = LipinskiCalc(smiles_2)

data = a.lipinski_table
data
```

Smile	Molecular_weight	Acceptors	Donors	LogP	Fulfill
Oc1ccc(-c2cn3nc(N4CCOCC4)sc3n2)cc1	302.083747	7	1	2.0000	True
NNC(=O)c1ccc(-c2nc3ccc(C(=O)NN)cc3[nH]2)cc1	310.117824	5	5	0.4369	True
Nc1ccc(-c2cn3c(C(=O)N4CCOCC4)csc3n2)cc1	328.099397	6	1	2.1174	True
COCCn1ccc2nc3ccn(-c4ccn[nH]4)c(=O)c3cc2c1=O	337.117489	7	1	1.0701	True
CC(=O)Nc1ccc(-c2nc3ccc(OC(C)=O)cc3c(=O)o2)cc1	338.090272	6	1	2.7387	True
O = C(Nc1ccc(-c2nc(-c3ccccc3)c3cc(NC(=O)C4CCCCC4	532.283826	4	2	8.0014	False
O = C(Cc1ccccc1)Nc1ccc(-c2nc(-c3ccccc3)c3cc(NC(=	548.221226	4	2	7.3262	False
CC(C)(C)c1cc(NC(=O)Nc2ccc(-c3cn4c(n3)sc3cc(OCC	560.220575	9	2	5.8565	False
COc1c(OC2OC(COC3OCC(O)(CO)C3O)C(O)C(O)C2O)cc2o	594.158470	15	8	-1.4766	False
COC(=O)C1OC(Oc2cc(OC(C)=O)c3c(=O)c(-c4ccc(O)cc	628.142820	15	1	2.1627	False
	Oc1ccc(-c2cn3nc(N4CCOCC4)sc3n2)cc1 NNC(=O)c1ccc(-c2nc3ccc(C(=O)NN)cc3[nH]2)cc1 Nc1ccc(-c2cn3c(C(=O)N4CCOCC4)csc3n2)cc1 COCCn1ccc2nc3ccn(-c4ccn[nH]4)c(=O)c3cc2c1=O CC(=O)Nc1ccc(-c2nc3ccc(OC(C)=O)cc3c(=O)o2)cc1 O=C(Nc1ccc(-c2nc(-c3ccccc3)c3cc(NC(=O)C4CCCCC4 O=C(Cc1ccccc1)Nc1ccc(-c2nc(-c3ccccc3)c3cc(NC(= CC(C)(C)c1cc(NC(=O)Nc2ccc(-c3cn4c(n3)sc3cc(OCC COc1c(OC2OC(COC3OCC(O)(CO)C3O)C(O)C(O)C2O)cc2o	Oc1ccc(-c2cn3nc(N4CCOCC4)sc3n2)cc1 302.083747 NNC(=O)c1ccc(-c2nc3ccc(C(=O)NN)cc3[nH]2)cc1 310.117824 Nc1ccc(-c2cn3c(C(=O)N4CCOCC4)csc3n2)cc1 328.099397 COCCn1ccc2nc3ccn(-c4ccn[nH]4)c(=O)c3cc2c1=O 337.117489 CC(=O)Nc1ccc(-c2nc3ccc(OC(C)=O)cc3c(=O)o2)cc1 338.090272 O=C(Nc1ccc(-c2nc(-c3ccccc3)c3cc(NC(=O)C4CCCCC4 532.283826 O=C(Cc1ccccc1)Nc1ccc(-c2nc(-c3ccccc3)c3cc(NC(= 548.221226 CC(C)(C)c1cc(NC(=O)Nc2ccc(-c3cn4c(n3)sc3cc(OCC 560.220575 COc1c(OC2OC(COC3OCC(O)(CO)C3O)C(O)C(O)C2O)cc2o 594.158470	Oc1ccc(-c2cn3nc(N4CCOCC4)sc3n2)cc1 302.083747 7 NNC(=O)c1ccc(-c2nc3ccc(C(=O)NN)cc3[nH]2)cc1 310.117824 5 Nc1ccc(-c2cn3c(C(=O)N4CCOCC4)csc3n2)cc1 328.099397 6 COCCn1ccc2nc3ccn(-c4ccn[nH]4)c(=O)c3cc2c1=O 337.117489 7 CC(=O)Nc1ccc(-c2nc3ccc(OC(C)=O)cc3c(=O)o2)cc1 338.090272 6 O=C(Nc1ccc(-c2nc(-c3ccccc3)c3cc(NC(=O)C4CCCCC4 532.283826 4 O=C(Cc1ccccc1)Nc1ccc(-c2nc(-c3ccccc3)c3cc(NC(= 548.221226 4 CC(C)(C)c1cc(NC(=O)Nc2ccc(-c3cn4c(n3)sc3cc(OCC 560.220575 9 COc1c(OC2OC(COC3OCC(O)(CO)C3O)C(O)C(O)C2O)cc2o 594.158470 15	Oc1ccc(-c2cn3nc(N4CCOCC4)sc3n2)cc1 302.083747 7 1 NNC(=O)c1ccc(-c2nc3ccc(C(=O)NN)cc3[nH]2)cc1 310.117824 5 5 Nc1ccc(-c2cn3c(C(=O)N4CCOCC4)csc3n2)cc1 328.099397 6 1 COCCn1ccc2nc3ccn(-c4ccn[nH]4)c(=O)c3cc2c1=O 337.117489 7 1 CC(=O)Nc1ccc(-c2nc3ccc(OC(C)=O)cc3c(=O)o2)cc1 338.090272 6 1 O=C(Nc1ccc(-c2nc(-c3ccccc3)c3cc(NC(=O)C4CCCCC4 532.283826 4 2 O=C(Cc1ccccc1)Nc1ccc(-c2nc(-c3ccccc3)c3cc(NC(= 548.221226 4 2 CC(C)(C)c1cc(NC(=O)Nc2ccc(-c3cn4c(n3)sc3cc(OCC 560.220575 9 2 COc1c(OC2OC(COC3OCC(O)(CO)C3O)C(O)C(O)C2O)cc2o 594.158470 15 8	Oc1ccc(-c2cn3nc(N4CCOCC4)sc3n2)cc1 302.083747 7 1 2.0000 NNC(=O)c1ccc(-c2nc3ccc(C(=O)NN)cc3[nH]2)cc1 310.117824 5 5 0.4369 Nc1ccc(-c2cn3c(C(=O)N4CCOCC4)csc3n2)cc1 328.099397 6 1 2.1174 COCCn1ccc2nc3ccn(-c4ccn[nH]4)c(=O)c3cc2c1=O 337.117489 7 1 1.0701 CC(=O)Nc1ccc(-c2nc3ccc(OC(C)=O)cc3c(=O)o2)cc1 338.090272 6 1 2.7387 O=C(Nc1ccc(-c2nc(-c3ccccc3)c3cc(NC(=O)C4CCCCC4 532.283826 4 2 8.0014 O=C(Cc1ccccc1)Nc1ccc(-c2nc(-c3ccccc3)c3cc(NC(= 548.221226 4 2 7.3262 CC(C)(C)c1cc(NC(=O)Nc2ccc(-c3cn4c(n3)sc3cc(OCC 560.220575 9 2 5.8565 COc1c(OC2OC(COC3OCC(O)(CO)C3O)C(O)C(O)C2O)cc2o 594.158470 15 8 -1.4766

Не более 5 донорных водородных связей


Не более 10 акцепторных водородных связей

Молекулярная масса соединения менее 500 а.е.м.

Коэффициент распределения октанолвода (log *P*), не должен превышать 5

113 rows × 6 columns

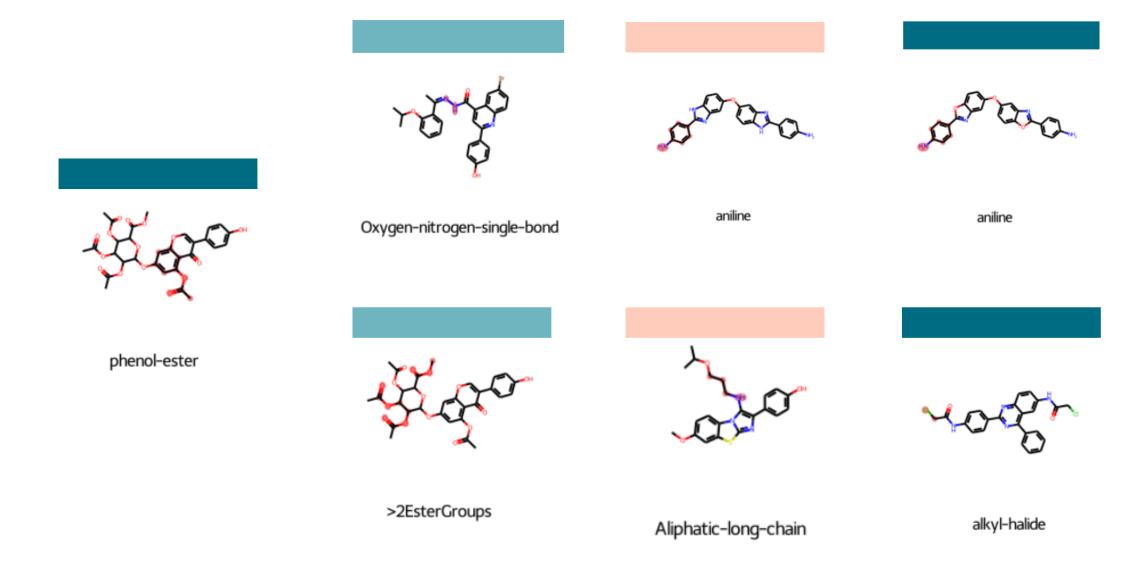
Draw Lipinski radar plot

Из оставшихся *113* молекул были исключены молекулы из списка **PAINS**. В результате осталось *28* молекул.

Filter PAINS

```
p = PAINS(list(data_fulfilled['Smile']))

p.get_pains()


[{'smiles': 'C/C(=N/NC(=0)c1cc(-c2ccc(0)cc2)nc2ccccc12)c1cc(Cl)ccc10',
    'pains': 'hzone_phenol_A(479)'},
    {'smiles': 'Cc1ccc(/N=N/c2c(S(=0)(=0)[0-])cc3c(ccc4nc(-c5ccc(N)cc5)sc43)c20)c(C)c1',
    'pains': 'azo_A(324)'}]

no_pains = p.exclude()
len(no_pains)
```

После удаления соединений, содержащих нежелательные подструктуры, отобрали **22** молекулы, обладающие удовлетворительными фармакокинетическими параметрами.

```
u = UnwantedSubs(no pains)
unwanted, clean = u.get unwanted()
unwanted
[{'smiles': 'COc1ccc2c(c1)sc1nc(-c3ccc(0)cc3)c(NCCCOC(C)C)n12',
  'name': 'Aliphatic-long-chain',
  'smarts': '[R0D2][R0D2][R0D2][R0D2]'},
 {'smiles': 'Nc1ccc(-c2nc3cc(Oc4ccc5[nH]c(-c6ccc(N)cc6)nc5c4)ccc3[nH]2)cc1',
  'name': 'aniline',
  'smarts': 'c1cc([NH2])ccc1'},
 {'smiles': 'Nc1ccc(-c2nc3cc(0c4ccc5oc(-c6ccc(N)cc6)nc5c4)ccc3o2)cc1',
  'name': 'aniline',
  'smarts': 'c1cc([NH2])ccc1'},
 {'smiles': '0=C(CC1)Nc1ccc(-c2nc(-c3cccc3)c3cc(NC(=0)CC1)ccc3n2)cc1',
  'name': 'alkyl-halide',
  'smarts': '[CX4][Cl,Br,I]'},
 {'smiles': 'C/C(=N/NC(=0)c1cc(-c2ccc(0)cc2)nc2ccc(Br)cc12)c1ccccc10C(C)C',
  'name': 'Oxygen-nitrogen-single-bond',
  'smarts': '[OR0,NR0][OR0,NR0]'},
 \{ \text{'smiles': 'COC(=0)C10C(Oc2cc(OC(C)=0)c3c(=0)c(-c4ccc(0)cc4)coc3c2)C(OC(C)=0)C(OC(C)=0)C10C(C)=0 \} 
  'name': '>2EsterGroups',
  'smarts': 'C(=0)0[C,H1].C(=0)0[C,H1].C(=0)0[C,H1]'},
 \{ \text{'smiles': 'COC(=0)C10C(Oc2cc(OC(C)=0)c3c(=0)c(-c4ccc(0)cc4)coc3c2)C(OC(C)=0)C(OC(C)=0)C10C(C)=0 \} 
  'name': 'phenol-ester',
  'smarts': 'c1ccccc10C(=0)[#6]'}]
print(f'Unwanted found: {len(unwanted)} \nclean: {len(clean)}')
Unwanted found: 7
clean: 22
```

u.visualize(unwanted[:7])

Выводы.

Из 504 соединений было отобрано 6 центроидных молекул, которые стали основой для построения фармакофора;

Найдено 377 потенциальных ингибиторов гепараназы, из которых 22 молекулы обладают удовлетворительными фармакокинетическими параметрами;

В дальнейшем планируется докинг наиболее удачных кандидатов.

Благодарим за внимание!!!