МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ «НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ПЕРСПЕКТИВНЫХ МАТЕРИАЛОВ И ТЕХНОЛОГИЙ»

МОСКОВСКИЙ ИНСТИТУТ ЭЛЕКТРОНИКИ И МАТЕМАТИКИ НАУЧНО-ИССЛЕДОВАТЕЛЬСКОГО УНИВЕРСИТЕТА «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ» МИЭМ НИУ ВШЭ

ТРУДЫ

ХХІІ МЕЖДУНАРОДНОЙ КОНФЕРЕНЦИИ «РАДИАЦИОННАЯ ФИЗИКА ТВЁРДОГО ТЕЛА»

(Севастополь, 9-14 июля 2012 г.)

под редакцией заслуженного деятеля науки РФ, д.ф.-м.н., проф. Бондаренко Г.Г.

Москва-2012 ЭЛЕКТРИЧЕСКИ АКТИВНЫЕ ЦЕНТРЫ С ВЫСОКОЙ ТЕРМИЧЕСКОЙ СТАБИЛЬНОСТЬЮ В ОБЛУЧЕННОМ БЫСТРЫМИ ЭЛЕКТРОНАМИ КРЕМНИИ *р-ТША*

Мурин Л.И.¹, Коршунов Ф.П.¹, Markevich V.P.², Литвинко А.Г.³, Медведева И.Ф.⁴

¹ Научно-практический центр НАН Беларуси по материаловедению П. Бровки 19, 220072 Минск, Беларусь, <u>murin@ifltp.bas-net.by</u>² The University of Manchester, Manchester M60 1QD, UK

³ Белорусский национальный технический университет, г. Минск ⁴ Белорусский государственный медицинский университет, г. Минск

Введение.

В облученных кристаллах кремния, подвергнутых высокотемпературным обработкам либо воздействию проникающих излучений при повышенных температурах, имеет место формирование сложных примесно-дефектных комплексов (наноразмерных кластеров), обладающих высокой термостабильностью [1-3]. Такие нанокластеры могут оказывать существенное влияние на электрические и оптические свойства материала, в том числе служить эффективными центрами рекомбинации неосновных носителей заряда В кремниевых быстродействующих приборах.

Цель данной работы - изучение методом нестационарной емкостной спектроскопии глубоких уровней (DLTS) электрически активных центров с высокой термической стабильностью, вводимых в результате отжига при 600-5- 800 К в кремниевые я⁺-/>структуры, облученные быстрыми электронами при комнатной температуре.

Методика эксперимента.

Исследуемые образцы изготавливались на эпитаксиальном кремнии />-типа (легирующая примесь-бор с концентрацией $N_B = 5 \cdot \text{Ю}^{14} \text{ см}^{"3}$), выращенном на подложке КДБ-0,005. Толщина эпитаксиального слоя составляла около 33 мкм. /'-«-переход формировался имплантацией фосфора в /?-базу с последующим отжигом при 1420 К в атмосфере азота и кислорода. Глубина залегания ^-«-перехода составляла 8-^9 мкм, площадь - 9-10"² см² (2,8х3,2 мм²). В качестве омических контактов напылялся слой алюминия толщиной 4,5 мкм.

Облучение и⁺-/?-структур осуществлялось электронами с энергией E = 4 МэВ при плотности потока электронов $W^{12}cm^2c''$. Температура образцов в процессе облучения не превышала 300 К. Термический отжиг облученных л⁺-р-структур проводился в печи на воздухе.

Определение характеристик радиационных дефектов (концентрация, энергия активации, сечение захвата носителей заряда) в базовой области

 u^+ -/?-структур осуществлялось методом нестационарной емкостной спектроскопии глубоких уровней (Deep Level Transient Spectroscopy-DLTS) [4]. Спектры *DLTS* измерялись в диапазоне температур 77н-400 К в режимах заполнения ловушек как основными, так и неосновными носителями заряда.

На рис. 1 представлены DLTS-спектры и⁺-р-структуры после 15 2

облучения электронами флюенсом Φ - 2-10 см". В результате облучения в базовую /^-область вводятся радиационные дефекты, перезарядка глубоких уровней которых приводит к возникновению на спектрах максимумов *HI*, *H2* и минимума *E*.

основными носителями заряда, штриховая — неосновными.

Ловушкам *HI* и *H2* соответствуют глубокие уровни донорного типа у ivK),19 эВ и £\,+0,36 эВ с сечениями захвата дырок <jhi = 5,8-Ю"¹⁶ и стяг = 2,4-10"¹⁵ см², а ловушке Е1 - глубокий уровень донорного типа у E_c -0,24 эВ с сечением захвата электронов а = 1,6-1 О*¹⁵ см². В целом вид DLTS спектра типичен для облученного электронами *p-Si*, полученного методом Чохральского [5-7]. Уровень *H*\ принадлежит дивакансии F₂(+/0), уровень *H2* - комплексу углерод внедрения - кислород внедрения С,0;(+/0), а уровень Е1 - комплексу бор внедрения - кислород внедрения ДО,(0/-) [5-7].

Отжиг облученных //-^-структур при 600 К в течение 30 минут приводит к изменению вида DLTS-спектров, что выражается в

исчезновении пиков одних типов РД и появлении других (рис. 2). Так, например, при перезарядке ловушек неосновными носителями заряда на спектре отсутствует пик ловушки ДО,, но появляется пик другой ловушки с глубоким уровнем акцепторного типа у £,,+0,31 эВ и сечением захвата дырок сг= 4,9-10¹¹⁴ см². Вероятнее всего, этой ловушкой является комплекс бор внедрения - углерод замещения B_tC_s [8]. Следует отметить, что B, C_s образуется в значительно меньшей концентрации, чем комплекс 5,0,.

Рис. 2. DLTS-спектры и⁺-р-структуры после облучения быстрыми электронами при комнатной температуре ($\Phi = 5 \cdot 10^{15}$ см^{"2}) и отжига при 600 К в течение 30 минут.

После отжига при $T_{omx} = 600$ К на DLTS-спектрах также исчезает пик V_2 и появляется дополнительный пик с максимумом, смещенным по отношению к пику Pr на 10 К в область более высоких температур (рис. 2). Такое смещение пика дивакансии наблюдалось в работе [9] при отжиге облученного /?-Si и трактовалось авторами как отжиг дивакансии с образованием комплекса V_2O . Это также находится в хорошем согласии и с результатами по отжигу дивакансий в облученном электронами кислородосодержащем *n-Si* [10], где наблюдалось некоторое смещение акцепторных уровней V₂ при трансформации V₂ в V₂O. О присутствии примесных атомов кислорода в значительных концентрациях в исследуемых структурах свидетельствует эффективное образование

комплексов С,О, и 5,0,. В связи с вышеизложенным представляется логичным идентифицировать ловушку с донорным уровнем $\pounds_v+0,24$ эВ (сечение захвата дырок сг= 1-Ю"¹⁴ см²) как комплекс V_2O , образующийся в результате захвата подвижных при $T_{omx} = 600$ К дивакансий междоузельными атомами кислорода.

На рис. 3 показана эволюция DLTS-спектров в результате изохронного отжига при 600-^675 К диодной n^+ —^-структуры,

1C y

облученной флюенсом электронов $\Phi = 510$ см". Здесь, как и на рис. 2, показан спектр, измеренный только в режиме заполнения дырками ловушек с глубокими уровнями в нижней половине запрещенной зоны кремния. Ловушек с глубокими уровнями в верхней половине запрещенной зоны Si не обнаружено.

Повышение температуры изохронного отжига до 650 К сопровождается исчезновением на спектрах пиков, соответствующих комплексам V_20 и B_tC_s (рис. 3). При этом возникновение на DLTS- спектрах новых пиков с амплитудами, сопоставимыми с таковыми для отжигаемых дефектов, не наблюдается. Отметим, что температурный диапазон отжига V_20 и B_tC_s соответствует литературным данным [8-10].

Наиболее существенные изменения вида DLTS-спектров наблюдаются при $T_{omxc} > 650$ К (рис. 3). При этих температурах отжигается комплекс С,О,. Его отжиг сопровождается возникновением на спектрах целого ряда новых пиков. Для большей наглядности на рис. 4 представлены спектры облученных разными флюенсами электронов и⁺-/>-структур после отжига при 700 К в течение 30 мин. Видно, что достаточно хорошо разрешаются пики ловушек *H5-H8*. Пик

ловушки *H9* перекрывается с пиком неотожженного полностью комплекса C,0,.

Рис. 3. Изменение вида DLTS-спектров диодной и⁺-/?-структуры в процессе 30минутного изохронного отжига в интервале температур 600--675 К.

Рис. 4. Вид DLTS-спектров после стадии изохронного отжига при 700 К *n*⁺-*p*- структур, облученных разными флюенсами электронов при комнатной температуре.

Амплитуда DLTS пика напрямую зависит от концентрации ловушек [4]. Из полученных результатов (рис. 4) следует, что концентрация ловушек *H5-H9* увеличивается с ростом флюенса электронного

облучения, что свидетельствует о радиационно-термической природе их происхождения. Из зависимостей Аррениуса были определены параметры уровней ловушек *H5-H9*. Данные приведены в таблице 1.

Таблица 1

Параметры ловушек, наблюдавшихся в р-области облученных п—/^-структур после

		отжига при <i>Т_{отж} ></i> 700 К
Уровень	Энергия активации, эВ	Сечение захвата, см ²
H5	£>0,16	<i>a</i> = 2,8-10 ¹¹⁴
не	£,,+0,22	$a = 4, MO''^{14}$
HI	$E_{v}+0,24$	$a = 2,7-10''^{14}$
т	<i>E_v</i> + 0,32	$a = 2,4-10''^{15}$
H9	£,,+0,39	$c_{T} = 5,7-10^{116}$

Пик ловушки *H9* хорошо разрешается на DLTS-спектрах при $T_{omsc} \sim 725$ К, то есть после полного отжига комплекса C_rO , (рис. 5). Ловушки Я8 и

Н9 обладают наибольшей термической стабильностью. Они наблюдаются после температур отжига вплоть до

Тотж ~ 800

Рис. 5. Вид DLTS-спектров на различных этапах изохронного (30 мин.) отжига ДИОДНОЙ Π -*p*структуры, облученной флюенсом электронов Φ = 5- IO^{15} см^{"2}.

Данные, полученные методом DLTS для центров *H5-HS*, не позволяют однозначно определить их природу. Можно лишь предположить, что, скорее всего, это углеродосодержащие центры междоузельного типа. В то же время ловушку *H9*, которой соответствует глубокий уровень донорного типа у E_v +0,39 эВ, можно идентифицировать как комплекс *С&ų*. Формирование этого центра

наблюдалось методом фотолюминесценции в облученных быстрыми электронами кристаллах Si при отжиге C,0, [11]. Комплексу C/Cb, в оптических спектрах соответствует P-линия (hv = 0,767 эВ). Донорный уровень данного комплекса должен располагаться вблизи уровня комплекса C_rO_s, примерно на 0,03 эВ dsit [11]. Наиболее вероятно, что комплекс CiO_{2i} образуется в результате захвата подвижных атомов C_r (появляющихся при диссоциации C_rO_r [12]) кислородными димерами, которые всегда присутствуют в кислородосодержащем кремнии [13]. Другими словами, формирование комплексов при отжиге облученных кристаллов Si идет согласно реакций C,0, => C, + O, и Q + O2, => CiO_{2i}.

Заключение.

Таким образом, методом DLTS спектроскопии изучены электронные свойства примесно-дефекгных комплексов, образующихся при высокотемпературном отжиге ($T_{oттк} = 600$ н-800 K) кремниевых диодных и⁺-р-структур, облученных электронами с E = 4 МэВ при T_0 бп ~ 300 K. Установлено, что в результате электронного облучения в р-базу диодных и⁺-/?-структур вводятся следующие электрически активные центры: комплексы углерод внедрения - кислород внедрения C,0,, бор внедрения кислород внедрения B_tO , и дивакансия Vi. Следует ожидать, что наряду с вышеуказанными дефектами эффективно образуется и комплекс вакансия - кислород (A- центр), который в спектрах DLTS кремнияр-типа не проявляется.

После 30-минутного отжига при 600 К на DLTS спектрах присутствуют пики комплексов C,0,, VzO и B£_s. Ловушки ViO и BiC_s термически стабильны до 650-н660 К. Отжиг комплекса C/O, наблюдается при $T_{omxc} >$ 670 К. При этом на спектрах возникают новые пики, соответствующие ловушкам с уровнями у £_v+0,16 эВ, E_v +0,22 эВ, E_v +0,24 эВ, E_v +0,32 эВ и £_v+0,39 эВ. Анализ результатов с учетом литературных данных показывает, что глубокий уровень донорного типа у £_v+0,39 эВ, вероятнее всего, принадлежит комплексу C,02;, которому в спектрах фотолюминесценции соответствует Р-линия (*hv* =

 767 эВ) и который обладает высокой термической стабильностью. Работа выполнена при частичной финансовой поддержке БРФФИ.'

Литература

 Lindstrom J.L., Murin L.I., Hallberg T. et al. Defect engineering in Czochralski silicon by electron irradiation at different temperatures // Nucl. Inst, and Meth. Phys. Res. B. - 2002. - Vol. 186. - P. 121-125.

- Murin L.I. Vacancy-oxygen defects (VO_n, n>3) in irradiated silicon: infrared absorption studies // Труды 16^{го} Междунар. совещ. «РФТТ», под ред. Бондаренко Г.Г. - Москва, 2006. - С. 447-454.
- Коршунов Ф.П., Богатырев Ю.В., Ластовский С.Б. и др. Радиационные дефекты в кремнии *p*-типа, облученном быстрыми электронами при повышенных температурах // Доклады НАН Беларуси. - 2008. - Т. 52, №3. - С. 40-43.
- Lang D.V. Deep-level transient spectroscopy: a new method to characterize traps in semiconductors // J. Appl. Phys. - 1974. - Vol. 45, № 7. - P. 3023-3032.
- Mooney P.M., Cheng L.J., Stili M. et al. Defect energy levels in borondoped silicon irradiated with 1-MeV electrons // Phys. Rev. B. - 1977. - Vol. 15, №8.-P. 3836-3843.
- 6. Londos C.A. Carbon-related radiation damage centres and processes in p-type Si // Semicond. Sci. Technol. 1990. Vol. 5, № 7. P. 645-648.
- Markevich V.P., Murin L.I., Lastovskii S.B. et al. Electrically active radiation-induced defects in Czochralski-grown Si with low carbon content // J. Phys.: Condens. Matter. 2005. Vol. 17, № 22. P. S2331- S2340.
- Kimerling L.C., Asom M.T., Benton J.L. et al. Interstitial defect reactions in silicon // Mater. Sci. Forum. 1989. Vols. 38-41. P. 141-150.
- Trauwaert M.-A., Vanhellemont J., Maes H.E. et al. Low-temperature anneal of the divacancy in p-type Si: A transformation from V2 to V_xO_y complexes? // Appl. Phys. Lett. 1995. Vol. 66, № 22. P. 3056-3057.
- Markevich V.P., Peaker A.R., Lastovskii S.B. et al. Defect reactions associated with divacancy elimination in silicon // J. Phys.: Condensed Matter. - 2003. - Vol. 15. - P. S2779-S2789.
- Davies G., Newman R.C. Carbon in monocrystalline silicon // in Handbook on Semiconductors, Vol. 3, ed. by S. Mahajan (Elsevier North Holland, Amsterdam, 1994), Chapter 21, P. 1557-1635.
- Murin L.I., Markevich V.P., Lindstrom J.L. et al. // Carbon-oxygen- related complexes in irradiated and heat-treated silicon: IR absorption studies // Solid State Phenomena. - 2002. - Vols. 82-84. - P. 57-62.
- 13. Murin L.I., Tolkacheva E.A., Markevich V.P. et al. The oxygen dimer in Si: its relationship to the light-induced degradation of Si solar cells? // Appl. Phys. Lett.-2011.-Vol. 98, № 18.-P. 182101 (1-3).