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ABSTRACT

To understand the involvement of thyroid hormone on the postnatal development of hypothalamic thermosensi¬
tive neurons, we focused on the analysis of thermosensitive neuronal activity in the preoptic and anterior hypo¬
thalamic (PO/AH) regions of developing rats with and without hypothyroidism. In euthyroid rats, the distribu¬
tion of thermosensitive neurons in PO/AH showed that in 3-week-old rats (46 neurons tested), 19.5% were

warm-sensitive and 80.5% were nonsensitive. In 5- to 12-week-old euthyroid rats (122 neurons), 33.6% were

warm-sensitive and 66.4% were nonsensitive. In 5- to 12-week-old hypothyroid rats (108 neurons), however,
18.5% were warm-sensitive and 81.5% were nonsensitive. Temperature thresholds of warm-sensitive neurons

were lower in 12-week-old euthyroid rats (36.4 ± 0.2°C,  = 15, p < 0.01,) than in 3-week-old and in 5-week-
old euthyroid rats (38.5 ± 0.5°C, « = 9 and 38.0 ± 0.3°C,  = 15, respectively). The temperature thresholds of
warm-sensitive neurons in 12-week-old hypothyroid rats (39.5 ± 0.3°C,  = 8) were similar to that of warm-sen¬

sitive neurons of 3-week-old raats (euthyroid and hypothyroid). In contrast, there was no difference in the thresh¬
olds of warm-sensitive neurons between hypothyroid and euthyroid rats at the age of 3-5 weeks. In conclusion,
monitoring the thermosensitive neuronal tissue activity demonstrated the evidence that thyroid hormone regulates
the maturation of warm-sensitive hypothalamic neurons in developing rat brain by electrophysiological analysis.

INTRODUCTION

It is well known that hypothyroidism in rats causes de¬
creased thermorégulation (1). The central nervous sys¬

tem (CNS), especially during its development, is under the
control of thyroid hormone (2,3). The preoptic and ante¬
rior hypothalamic area (PO/AH) is a main thermosensitive
region of the brain (4-8). Recent evidence indicates that
thermoregulatory behavior did not reverse the propylth-
iouracil (PTU)-induced hypothermia, suggesting that PTU-
induced hypothyroidism leads to a regulated reduction in
body temperature (9). However, precise involvement of
thyroid hormone toward the maturation of theromore-
sponsive hypothalamic neurons remains to be further clar¬
ified.

To understand the role of thyroid hormone during de¬
velopment of the brain, we focused on the analysis of hy¬

pothalamic neuronal thermosensitivity using developmen¬
tal hypothyroid animal models. To apply the electrophys¬
iological analysis of hypothalamic neuron maturation, we

monitored the thermosensitive neural tissue potential ac¬

tivities in PO/AH regions of developing rats before and af¬
ter exogenous heat loading. The monitoring of maturation
of PO/AH thermosensitive neurons may be a useful method
for understanding brain development and hormonal regu¬
lation.

MATERIALS AND METHODS

Euthyroid and hypothyroid male Wistar rats from dif¬
ferent age groups were used: 3 weeks of age (5 euthyroid
and 6 hypothyroid rats); 5 weeks of age (5 euthyroid and
6 hypothyroid rats); and 12 weeks of age (7 euthyroid and
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6 hypothyroid rats). The rats were housed in cages in a

room maintained at approximately 21°C and 50% relative
humidity. Lighting was timed for a 12-hour photocycle.

To cause the hypothyroid condition in rats, the mother
of the litter received 0.02% PTU (Sigma, St. Louis, MO)
to drink for 3 weeks (10,11).

Circulating thyroid hormone level (triiodothyronine [T3]
and thyroxine [T4]) determined by radioimmunoassay
(RIA) (Eiken ICL, JAPAN) revealed that both hormones in
all hypothyroid rats were undetectable (normal range; T3:
1.3-1.7 nmol/L, T4: 48.9-56.6 nmol/L).

The animals in the experiment were anesthetized with
urethane (1.0-1.2 g/kg, intraperitoneal) and placed in a
stereotaxic apparatus. The animals' body temperatures
were monitored during the experiment with thermodetec-
tors and device MGAIII-219 (Nihonkohden, Tokyo, Japan)
at different sites: in the rectum, in the brain (contralateral
to the PO/AH recording site, cuadal from bregma, 4.0-5.0
mm, 3.0-4.0 mm aside from midline and 4.0-5.0 mm be¬
low the surface of the skull) and superficially on the back
and abdominal skin.

Superficial rat head tissue was removed and the holes
(1-mm diameter) in the cranial bone were prepared for
stereotaxic insertion of the microelectrodes. Stainless-steel
insulated microelectrodes (type: UJ 3002B, Nichon-
kohden), with 5-µ,  tip diameters, were used to record the
extracellular neuronal electric activity (spikes) from
PO/AH. The stereotaxic coordinates for the PO/AH were

set as follows: (1) for 3-week-old rats: 0-0.5 mm rostral
to bregma; 0-1.0 mm from the midline and 7.0-9.0 mm

below the surface of the skull (12); (2) for 5-week-old rats:
0-0.5 mm caudal to bregma, 0-1.0 mm from the midline
and 8.0-9.0 mm below the surface of the skull (13); (3)
for 12-week-old rats: 0-1.0 mm caudal to bregma, 0-1.0
mm from the midline, and 8.0-10.0 mm below the surface
of the skull (14). The experimental protocol consisted of
extracellular recording of the neuronal spikes and testing
their firing rates (imp/s) in response to the thermal stimu¬
lation resulting from rat head warming by lamp (40 W) or

cooling down to 33°C by switching it off. The lamp was

situated 10-20 cm from the animal and the animal's rec¬

tal temperature (37°C) was maintained by a blanket con-

25

20

 

FIG. 1. An example of a warm-sensitive neuron recorded from PO/AH of euthyroid 12-week-old rats. A: A plot of firing
rate (imp/s) in response of cerebral temperature (°C) changes. Every value of firing rate is result of 10-second record. B: Slow
and fast records of neuronal activity at different cerebral temperatures.  ,-level of discrimination of spike activity for the warm-
sensitive neuron. b,-leve\ of background noise. c,-zero level. Horizontal bar: —0.5 seconds and X0.05 seconds for slow and
fast records respectively; vertical bar: —0.1 mV.
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troller, (ATB-1100, Nihonkohden). Spike discharges were

amplified by a Biophysical Amplifier (AVB-11A, Ni¬
honkohden) with a band pass of 200-3000 Hz, displayed
during the experiments on an oscilloscope (VC-11, Ni¬
honkohden) and stored to digital tape with a digital tape
recorder (TEAC, Tokyo, Japan, RD-120TE DAT DATA
RECORDER).

Averager/Histogram Analyzer (QC-111J, Nihonkohden)
was used for window discrimination of spikes of different
amplitudes, firing rate counting, and separation of back¬
ground noise. Figure 1 demonstrates an example of firing
rate changes and spikes of a warm-sensitive PO/AH neu¬

ron in response to cerebral temperature changes. A Ther¬
mal Array Recorder (Nihonkohden) and an AF-550 Wave¬
form Analyzer (Ono Sokki, Japan) were used for the
preparation of these records.

The mean firing rates of discriminated single neurons

were counted in 10-second intervals every 0.2°C-0.5°C of
cerebral temperature change.

Firing rates of neurons were tested with cerebral heat¬
ing at a rate not faster than 0.5°C/min, through the range
33°C-41°C. The records of some neuronal spike activities
were repeated to confirm the constant position of the mi¬
croelectrode tip. To find new neuronal spike activity the
microelectrode was moved deeper until the next spike was

recorded and cerebral warming continued. The thermal co¬

efficient was used to characterize the temperature response
of the neurons (7). Neurons with firing rates changed at a

rate less than 0.8 imp/s°C were classified as nonther-
mosensitive neurons (nonsensitive). Neurons that displayed
an increase in firing rates with rising cerebral temperature
at a rate of 0.8 imp/s or higher were warm-sensitive neu¬

rons. For nonlinear warm-sensitive neurons, stepwise re¬

gression analysis was applied to determine the thermal
thresholds, ie, the cerebral temperature which the thermal
coefficient changes beyond 0.8 imp/s°C.

After the above experiments, the animals were cannu-

lated through the heart and blood samples were collected
for T4 and T3 estimation, and perfused later through the
heart with 10% formalin/4% paraformaldehyde. Samples
of the animals' brains were taken for histological confir¬
mation of microelectrode tip position. Statistical analysis
comparable parameters are described as mean values stan¬
dard errors of the mean (SE). Differences between samples
were tested for statistical significance by means of a dis¬
tribution-free test (Wilcoxon) with a significance limit of
p < 0.05. Distributions of types of thermosensitive neurons

(units) were analyzed by chi-square test.

RESULTS

The results of neuronal spike activity recorded from
PO/AH regions of euthyroid and hypothyroid 3-, 5- and
12-week-old rats are summarized in Table 1. The relative
quantity of warm-sensitive and nonsensitive neurons tends
to be different in euthyroid rats of 3 and 5 weeks of age
(p = 0.08), and 3 and 12 weeks of age (p = 0.13). The in¬
crease of warm-sensitive neurons was observed during the
development of euthyroid rats: from 19.5% (3 weeks) to
34.3% and 32.7% (5 and 12 weeks, respectively).

The analyses showed the decrease in the relative quan¬
tity of warm-sensitive PO/AH neurons from 33.6% (eu-
thyroidism) to 18.5% (hypothyroidism) in rats 5-12 weeks
of age.

With respect to the cerebral temperature, the firing rates
of PO/AH warm-sensitive neurons detected in our study
were classified as linear or nonlinear (7,15). The firing rates
of the majority of warm-sensitive neurons showed nonlin¬
ear dependence on cerebral temperature with a thermal co¬

efficient higher than 0.8 imp/s°C in the range of 36°C^40°C
(Figs. 2 and 3). The warm-sensitive responses of these neu¬

rons were observed after the cerebral temperature reached
a specific temperature called "threshold." Before reaching
the threshold, the thermal coefficients were lower than 0.8
imp/s°C. We identified with linear temperature dependence
in 7 of 22 warm-sensitive PO/AH neurons in 5-week-old
euthyroid rats, 4 of 19 in 12-week-old euthyroid rats and
only 1 of 12 in 5-week-old hypothyroid rats. All PO/AH
warm-sensitive neurons in 3-week-old rate (euthyroid and
hypothyroid) and 12-week-old hypothyroid rats had non¬

linear dependence on cerebral temperature.
Comparison of the nonlinear warm-sensitive neurons

with respect to their thermal coefficients around the thresh¬
olds did not reveal significant differences between 3-, 5-,
and 12-week-old euthyroid rats, and between euthyroid
and hypothyroid rats (Table 2). Also, at the estimated
points of the thresholds of nonlinear warm-sensitive neu¬

rons among the different age groups, there were not dif¬
ferences of firing rates between hypothyroid and euthyroid
rats. On the other hand, with respect to cerebral temper¬
ature values of the thresholds of nonlinear warm-sensitive
neurons, there were differences depending on age and thy¬
roid function of developing rats (Fig. 3, Table 3). Thus, 3-
and 5-week-old euthyroid rats had PO/AH warm-sensitive
neurons with higher thermal thresholds than in 12-week-
old euthyroid rats by 2.1°C (p = 0.005) and 1.6°C (p =

0.001), respectively. Nonlinear PO/AH warm-sensitive

Table 1. Summary of PO/AH Units in Euthyroid and Hypothyroid Rats of 3, 5, and 12 Weeks of Postnatal Age

Age 3 weeks 5 weeks 12 weeks 5 weeks +12 weeks

Euthyroid rats
All units
Nonsensitive
Warm-sensitive
Hypothyroid rats
All units
Nonsensitive
Warm-sensitive

46
37 (80.5%)

9 (19.5%)
41

37 (90.3%)
4 (9.7%)

64
42 (65.7%)
22 (34.3%)

51
49 (80.4%)
12 (19.6%)

58
39 (67.3%)
19 (32.7%)

47
39 (83.0%)

8 (17.0%0

122
81 (66.4%)
41 (33.6%)

108
88 (81.5%)
20 (18.5%)

Statistical evaluation by chi-square tests of 3 vs. 5 weeks, 3 vs. 12 weeks, and 5 vs. 12 weeks were p = 0.08, 0.13 and 0.85, respectively.
PO/AH, preoptic and anterior hypothalamic regions.
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FIG. 2. Representative scatter-plot figure of relationship be¬
tween firing rates (imp/s) and cerebral temperature (°C),
recorded in preoptic and anterior hypothalamic regions
(PO/AH) of 5- and 12-week-old euthyroid rats. The thermal
threshold of 5-week-old rats is higher than that of 12-week-
old rats.

neurons of hypothyroid 12-week-old rats had significantly
higher thermal thresholds (39.5 ± 0.3°C) than those in eu¬

thyroid 12-week-old rats (36.4 ± 0.2°C, p = 0.0004).

DISCUSSION

Our data demonstrated a developmental change of the
composition of thermosensitive neuronal activities of
PO/AH regions and the maturation of warm-sensitive neu¬

rons in rat brain with age, which is in concordance with
previous results (12,16). Because the consequence of thy¬
roid hormone insufficiency on ontogenetic development of
thermosensitive neurons in PO/AH regions had not been
investigated using hypothyroid rats of different ages, we

showed the first evidence of the decrease in the relative
quantity of warm-sensitive neurons in PO/AH regions in

EUTHYROIDISM
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FIG. 3. Nonlinear warm-sensitive neurons recorded in pre¬
optic and anterior hypothalamic regions (PO/AH) of 3-, 5-,
and 12-week-old euthyroid and hypothyroid rats (-cerebral
temperature, imp/s-firing rate). The thermal threshold of non¬
linear warm sensitive neurons is shifted (maturated) age-de-
pendently in euthyroid rats but not in hypothyroid rats.

comparison with that of euthyroid rats. Thus, the relative
quantitative distribution of temperature-sensitive and non-
sensitive neurons in PO/AH showed the immaturity of de¬
velopment of warm-sensitive neurons at comparably ear¬

lier stages and in a hypothyroid state.
Increasing spontaneous firing rates of PO/AH neurons

were observed during development in newborn rats (12),
which suggests an immaturity of firing rates of hypothal¬
amic neurons even by 21 days of age. On the other hand,
subsequent neuronal differentiation in PO/AH regions
could be observed from 3 weeks of age to puberty in rats
(17), despite cessation of synaptogenesis in the preoptic
area of the hypothalamus by 24 days of age (18,19). How¬
ever, our data demonstrated that maturation of PO/AH
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Table 2. Averaged Firing Rates (imp/s) of PO/AH Units (all, Non-sensitive, warm- and cold-sensitive)
at Cerebral Temperature 38°C in 3-, 5-, and 12-week-old Euthyroid (E) and Hypothyroid (H) Rats

Postnatal
age (weeks) 12

E imp/s
H imp/s
 = 0.0001
Nonsensitive
E imp/s
H imp/s
 = 0.0001
Warm-sensitive
E imp/s
H imp/s
 = 0.008

2.4
1.7

2.4
1.8

2.9
1.4

0.2 ( 
0.2 ( 

46)
41)

ntc
0.8 ( = 37)
0.7 ( = 37)

0.4 ( 
0.4 ( 

9)
4)

4.4 ± 0.5 { 
2.4 ± 0.3 ( 

= 64)
= 61)

3.4 ± 0.7 ( = 42)
1.9 ± 0.8 ( = 49)

6.3 ± 1.0 ( = 22)
4.6 ± 0.8 ( = 12)

6.1 ± 0.6
2.5 ± 0.3

 = 58)
 = 47)

4.8
2.9

1.0 ( = 39)
0.6 (« = 39)

8.9 ± 1.4 ( = 19)
3.1 ± 0.6 ( = 8)

PO/AH, preoptic and anterior hypothalamic regions.

neurons, particularly warm-sensitive ones, continued after
21 postnatal days in rats and, although it was delayed by
hypothyroidism. Even though we tried to minimize the in¬
terference form the peripheral signal, hypothyroidism itself
might modify the activity of hypothalamic neurons in¬
volved in temperature regulation in response to heat re¬

duction such as activation of heat-saving mechanisms
(vasoconstriction, piloerection) as well as shivering. How¬
ever, the pattern of the neuronal activities observed sug¬
gest comparable alteration in the developmental response
as well as the effect of hypothyroidism.

We confirmed the maturation of warm-sensitive neurons
in PO/AH in the late stages of postnatal ontogenesis by ex¬

amining the neuronal thermal thresholds, ie, temperatures
at which the thermal coefficient became equal to or higher
than 0.8 imp/s in nonlinear warm sensitive neurons. We
found that the thresholds of warm-sensitive neurons in 12
week old rats were decreased by 2.1°C and 1.6°C in com¬

parison with those at 3 and 5 weeks of age, respectively.
The nonlinear characteristics of temperature versus fir¬

ing rate response curves of warm-sensitive neurons are re¬

ported to be clearly related to their thermosensitive prop¬
erties of tetrodoxin-sensitive, noninactivating sodium
(Na+) channels (7,20). But the mechanisms of the matu¬
ration of thermosensitive PO/AH neurons and the role of
thyroid hormone in these phenomena have not been clar¬
ified. On the other hand, developmental changes in Na+
current densities during postnatal maturation had been
identified in different types of neurons (21,22). Recently,
selective upregulation of Na+ current density by T3 in hip-
pocampal neurons from postnatal rats (23) and different
Na+-K+-adenosinc triphosphatase (ATPase) subunits in
the developing rat cerebellum and cortical neurons had
been reported (24-26). Therefore, the effects of thyroid
hormone on thermosensitive neurons and their maturation
may involve a change in the Na+ channels in PO/AH and
other regions of the brain. Alternatively, an indirect rela¬
tionship between thyroid hormone and immature ther¬
mosensitive neurons may be caused by some additional
peptide factors and/or neuromediators that modulate the
maturation of warm-sensitive neurons. Thyrotropin-re-
leasing hormone (TRH) especially is one of the candidate

Table 3. Average Sensitivity of Nonlinear Warm-Sensitive PO/AH Units Above
and Below the Temperature Thresholds and Average Values of Temperature

Thresholds in Euthyroid (E) and Hypothyroid Rats 3, 5, and 12 Weeks of Age

Sensitivity
below threshold

(imp/s °C)

Temperature
at threshold

(imp/s)

Frequency
at threshold
(imp/s °C)

Sensitivity
above threshold

(imp/s °C)

3 weeks of age
E mean ± SE (n = 9)
H mean ± SE (n = 4)

3 weeks of age
E mean ± SE (n = 15)
H mean ± SE (» = 11)

12 weeks of age
E mean ± SE (n = 15)
H mean ± SE (« = 4)

0.06
0.06

0.20
0.18

0.05
0.1

0.04
0.07

0.18 ± 0.04
0.25 ± 0.06

38.5 ± 0.5
39.0 ± 0.4

38.0 ± 0.3
38.8 ± 0.3

36.4 ± 0.2
39.5 ± 0.3
 =0.0001

2.1 ± 0.3
1.5 ± 0.4

4.5 ± 1.1
3.7 ± 1.0

3.6 ± 0.7
3.1 ± 0.6

2.9 ± 0.6
1.3 ± 0.3

3.7 ± 0.9
3.3 ± 0.4

3.5 ± 0.6
2.6 ± 0.4

n.s., not significant.
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factors, because TRH is also upregulated in hypothy¬
roidism (29), and simultaneously TRH can suppress warm-
sensitive neurons in the PO/AH regions (30,31). Another
possible modulator for PO/AH neuronal development is
nerve growth factor (NGF) which is upregulated by thy¬
roid hormone age-dependently (32) and has been shown
to be an important regulator of voltage-gated ion channels
(33). There are, however, no data on ontogenetic interac¬
tions of thermosensitive neurons in PO/AH regions with
TRH and/or NGF at hypothyroidism. At the same time,
our study showed that, there were no differences in the
nonlinear properties (thresholds) and the quantity of
warm-sensitive PO/AH neurons of younger (3-5 weeks of
age) hypothyroid rats in comparison with euthyroid ones

of the same age. These facts suggest that the relationship
between thyroid hormone and the properties of ther¬
mosensitive neurons in 3-5 week-old rats may be still weak
and immature. Conversely, in 12-week-old hypothyroid
rats thermal thresholds were almost the same as those in
3-5 week old euthyroid rats and substantially higher (by
3.1°C) than those of 12 weeks old euthyroid rats. This ev¬

idence indicates the possibility of a critical period (from 5
to 12 weeks postnatal life) in maturation of properties of
PO/AH warm-sensitive neurons, which is disturbed in hy¬
pothyroid rats.

Furthermore, we must consider the role of extrahypo-
thalamic influences in the developing PO/AH neuronal sys¬
tem, although there was no apparent reverse correlation in
thermal thresholds of warm-sensitive neurons (cerebral
temperature of the thresholds) versus peripheral, rectal,
and skin temperatures of rats.

In summary, our data demonstrated the electrophysio-
logical properties of warm-sensitive neurons, their rela¬
tive quantitative change in PO/AH regions during onto¬
genesis and as a consequence of hypothyroidism in rats.
These data indicate a crucial role of thyroid hormone on

neuronal maturation in the hypothalamic thermorespon-
sive regions.
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