

ОПРЕДЕЛЕНИЕ ЛЮФЕНУРОНА В ТОМАТАХ


Турко Марина Святославовна, **Хурсин** Полина Александровна, Крымская Татьяна Петровна

Люфенурон — ((RS)-1-[2,5-дихлор-4-(1,1,2,3,3,3-гексафторпропокси)-фенил]-3-(2,6-дифторбензоил)-мочевина), молекулярная формула $C_{17}H_8Cl_2F_8N_2O_3$ (IUPAK).

Люфенурон представляет собой бесцветное кристаллическое вещество, не имеющее запаха,. Люфенурон устойчив на свету и на воздухе, не подвержен гидролизу.

Физико-химические свойства люфенурона					
Эмпирическая формула	$C_{17}H_8Cl_2F_8N_2O_3$				
Молекулярная масса	483,4				
Температура плавления	174,1 °C				
Растворимость в воде при 20°C	плохо				
Растворимость в органических растворителях при 20°C (г/дм ³)	аметанол — 45; ацетонитрил — 50; дихлорметан — 70				

2

Применение люфенурона

Люфенурон — ингибитор синтеза хитина у насекомых, попадающий в организм насекомого с пищей и приводящий к прекращению линек и питания личинок.

На основе люфенурона зарегистрированы препараты против вредителей яблони (яблонная плодожорка), картофеля (колорадский жук), томата открытого грунта (хлопковая совка), пастбищ, участков, заселенных саранчовыми, дикой растительности (саранчовые);

На основе люфенурона и феноксикарба — против вредителей винограда (гроздевая листовертка), яблони (яблонная плодожорка).

Негативное воздействие люфенурона

Люфенурон нетоксичен для почвенных микроорганизмов, птиц, диких животных, земляных червей, пчел; токсичен для дафний. Малотоксичен для человека и полезных насекомых.

Острая пероральная токсичность для крыс и мышей $\Pi \Pi_{50} > 2000$ мг/кг; острая дермальная токсичность для крыс $\Pi \Pi_{50} > 2000$ мг/кг. На кожу и слизистую оболочку глаз кролика люфенурон раздражающего действия не оказывает.

Классы опасности. Зарегистрированные препараты на основе люфенурона относятся к 3 классу опасности для человека и 3 классу опасности для пчел.

Негативное воздействие люфенурона

При широкомасштабном применении пестицидов возникают экологические проблемы, связанные с загрязнением продуктов питания человека, кормов животных и в целом окружающей среды персистентными (долго не разлагающимися) веществами.

Допустимая суточная доза/ временная допустимая суточная доза (мг/кг массы тела человека)	Предельно допустимая концентрация / ориентировочная допустимая концентрация в почве (мг/кг)	Предельно допустимая концентрация / ориентировочный допустимый уровень в воде водоемов (мг/дм³)	Предельно допустимая концентрация / ориентировочный безопасный уровень воздействия в воздухе рабочей зоны (мг/м³)	Предельно допустимая концентрация / ориентировочный безопасный уровень воздействия в атмосферном воздухе (мг/м³)	Максимально допустимый уровень/ временный максимально допустимый уровень в продукции (мг/кг)
0,01/-	-/0,1	0,005/- (общ.)	-/0,8	-/0,01	плодовые (семечковые), картофель – 0,04; томаты – 0,5; виноград – 0,1

Подбор параметров определения люфенурона методом ВЭЖХ

Исследования проводили на жидкостном хроматографе Agilent 1260 Infinity с диодно-матричным детектором (Agilent Technologies, США).

Колонка

Режим элюирования

Состав подвижной фазы

Скорость

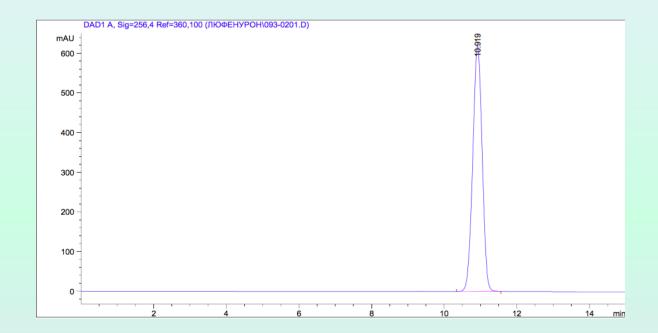
Объем вводимой пробы

Температура колонки

Длина волны

Hypersil Gold (250 x 4,0 мм, 5 мкм)

изократический

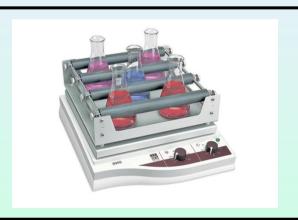

вода деионизованная: ацетонитрил (10:90, по объему)

0,30 мл/мин

20 мкл

22°C

256 нм



Хроматограмма стандартного раствора люфенурона, концентрацией 100 мкг/см³

Разработка методики пробоподготовки проб томатов

К 5 г измельчённого растительного материала, содержащего определенное внесенное количество люфенурона добавляли 20 г экстрагента (ацетонитрил, вода), перемешивали.

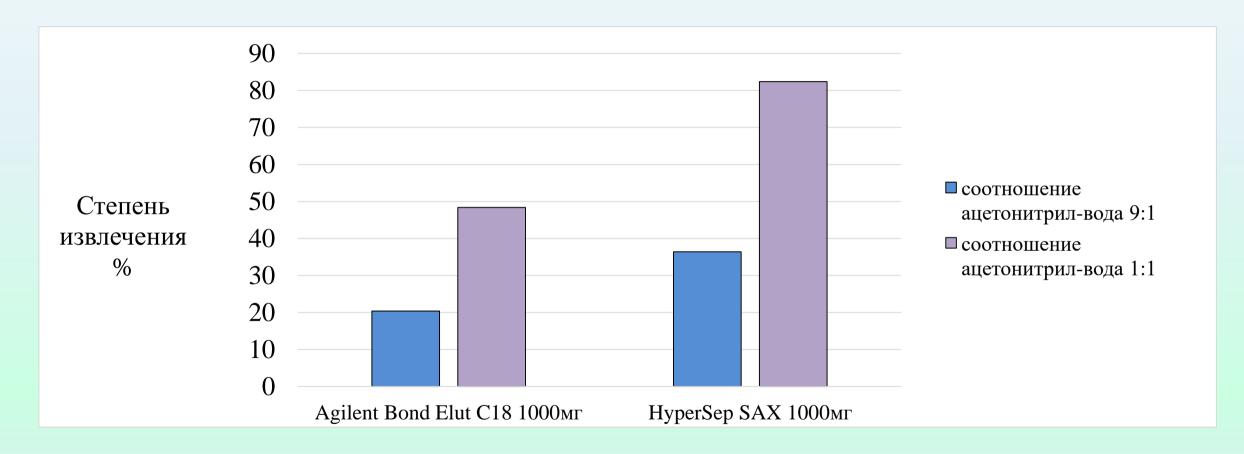
Затем в колбы вносили небольшое количество хлорида натрия и помещали на механический встряхиватель на 30 минут.

Экстракт фильтровали через слой безводного сульфата натрия (толщина слоя — 1,0-1,5 см) и полностью удаляли ацетонитрил на ротационном испарителе при температуре водяной бани не более 40°C.

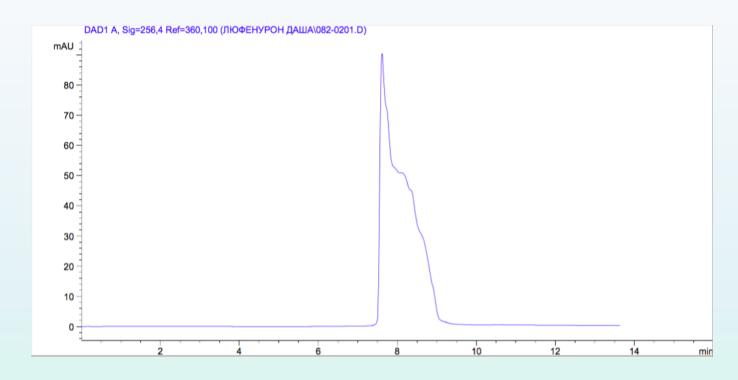
Твердофазная экстракция проб томатов

Для последующей очистки экстрактов использовали предварительно кондиционированные картриджи для твердофазной экстракции: Agilent Bond Elut C18 и HyperSep SAX 1000 мг.

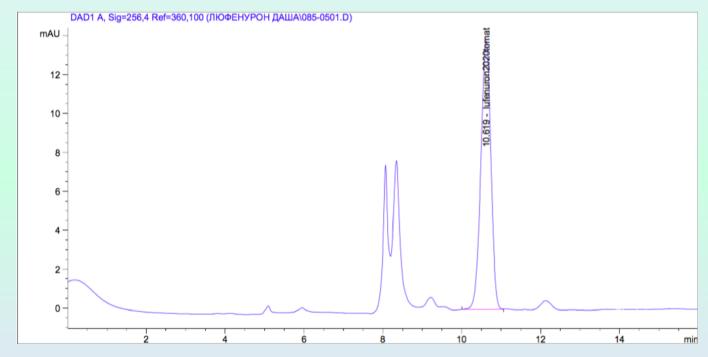
Остаток после экстракции и упаривания количественно переносили на картриджи, которые затем промывали 5 см 3 ацетонитрила со скоростью 1,5-2,0 см $^3/$ мин.


Элюат собирали в круглодонную колбу вместимостью 25 см³ и упаривали на ротационном вакуумном испарителе при температуре водяной бани не выше 40 °C досуха.

Сухой остаток растворяли в 1 см³ ацетонитрила и хроматографировали на жидкостном хроматографе Agilent 1260 Infinity.



Разработка методики пробоподготовки проб томатов


Степень извлечения люфенурона выше при использовании в качестве экстрагента смеси ацетонитрил:вода (1:1) и картриджа HyperSep SAX 1000мг.

Степень извлечения люфенурона (%) при экстрагировании из томатов

Хроматограмма экстракта из контрольного образца (извлечение растворителем ацетонитрил—вода 1:1) томата с использованием HyperSep SAX 1000мг

Хроматограмма экстракта из томата (извлечение растворителем ацетонитрил—вода 1:1) с концентрацией люфенурона 0,5 мг/кг с использованием HyperSep SAX 1000 мг

Показатели повторяемости и промежуточной прецизионности и их пределы

Название вещества	Диапазон измерений, мг/кг	Показатель повторяемос-ти _{ог} , %	Показатель промежуточной прецизионности $\sigma_{I(TO)}$,	Предел повторяемости r, %	Предел промежуточной прецизионности г _{I(TO)} ,%
Люфенурон	0,2-2,0	0,8	1,4	2,2	3,9

Заключение. В ходе выполнения исследований разработана методика определения люфенурона в томатах, заключающаяся в экстракции его ацетонитрилом с водой в соотношении 1: 1, очистке экстракта на картридже HyperSep SAX 1000 мг и последующем определении люфенурона методом высокоэффективной жидкостной хроматографии с диодно-матричным детектированием.

СПАСИБО ЗА ВНИМАНИЕ

Республика Беларусь 220012, г. Минск, ул. Академическая, 8

тел.: +375 17 284-13-70, +375 17 284-13-74, факс: +375 17 284-03-45

email: rspch@rspch.by chromatographic@rspch.by

www.certificate.by www.rspch.by