В. Н. Гапанович, В. В. Кирковский, Д. С. Третьяк, В. П. Голубович, О. Н. Куцук, А. В. Старостин, Н. И. Мельнова, С. В. Андреев

АНТИЛИПОПОЛИСАХАРИДНЫЙ ГЕМОСОРБЕНТ НА ОСНОВЕ СШИТОГО ПОЛИМИКСИНА. Сообщение 1

Настоящее сообщение посвящено исследованию гемосовместимости полимиксинВ сшитого гемосорбента в модельных опытах

Ключевые слова: Сепсис, полимиксин, анти- ЛПС гемосорбент.

V. N. Gapanovich, V.V. Kirkovsky, D. S. Tretiak, V. P. Golubovich, O. N. Kutsuk, A.V. Starostin, N.I.Melnova, S. V. Andreev

ANTILIPOLISAKHARIDNY HAEMO SORBENT ON THE BASIS OF SEWED POLYMYXIN

This present report is devote to the investigation of the hemocompatibility of polymyxin immobilized hemosorbent in model experiments.

Key words: Sepsis, polymyxin, anti-LPS hemosorbent, sorbtion, hemoperfusion.

Сепсис или «заражение крови», «раневая горячка» давно считалось одним из самых опасных и тяжело протекающих осложнений раневой инфекции, нередко заканчивающихся смертельным исходом. Только открытие и широкое использование антибиотиков привело к снижению летальности, которая до этого достигала практически 100%. Однако и в настоящее время летальность при сепсисе остается высокой (33-70%) (Трещинский А.И., Кузин М.И., Бочоришвили В.Г., 1990).

В США ежегодно регистрируется 300-500 тыс. случаев сепсиса, а летальность при этом составляет 30-90%. За год умирает 170-200 тыс. больных. Один день лечения обходится в 1000 долларов. В Европе сепсис диагностируется у 1 больного на 1 тыс. госпитализированных, что составляет около 500 тыс. больных. Только в Германии от сепсиса умирает 75 тыс. больных. Наиболее значимыми причинами увеличения частоты сепсиса являются снижение сопротивляемости организма больного, увеличение резистентности микроорганизмов к антибактериальным препаратам, рост частоты осложнений, большая продолжительность оперативных вмешательств, инфекционные осложнения травм [2, 3].

В условиях ведения боевых действий использование современного огнестрельного оружия приводит к возникновению повреждений, сопровождающихся гнойно—септическими осложнениями, в итоге приводящими к сепсису.

Попадающий в кровоток эндотоксин стенки грамнегативной микрофлоры из области гнойно—септического очага и/или просвета кишечника (при синдроме энтеральной недостаточности) приводит к возникновению каскадно протекающих процессов, конечным итогом которых является клиника инфекционно-токсического шока и полиорганной недостаточности [1-3]. Активация эндотоксином, имеющим липополисахаридную природу (ЛПС), моноцитов и макрофагов ведет к реакции высвобождения мощных медиаторов воспаления, таких как фактор некроза опухолей, интерлейкины-1, 4, 6 и 8. Вызываемое ими резкое снижение общего периферического сопротивления сосудистой системы обуславливает грубые нарушения микро-, а затем и макрогемодинамики. Следует отметить, что в патогенезе этого осложнения предлагают выделять две стадии: гиперигипокинетическую. Первая, достаточно редко диагностируется, а вторую не заметить невозможно. В этой связи очевидно, что в профилактике и, особенно, в лечении перитонита, центральную роль играет возможность эффективного снижения концентрации в крови липополисахарида грамнегативной флоры [2].

Известно, что лечебный эффект антибиотиков полимиксинового ряда достигается за счет прочного связывания и инактивации ЛПС-эндотоксина. Тем не менее, применение данных лекарственных препаратов может сопровождаться развитием нефро- и нейротоксических эффектов, что ограничивает их широкое использование в клинической практике. Разработка устройств и методик экстракорпоральной коррекции нарушений гомеостаза, позволяющих извлекать из крови и плазмы патогенетически значимые субстанции, создало предпосылки для разработки гемосорбентов, обеспечивающих эффективное связывание ЛПС-эндотоксина. Одними из первых работы в этом направлении были инициированы японскими учеными, которыми была сконструирована гемосорбционная колонка на основе композитного волокна с а-хлорацетоамидметиллированным полистерином и ковалентно сшитым полимиксином В, что препятствует «смыванию» антибиотика в

Схожие работы были проведены группой специалис-

Новые технологии в медицине

Оригинальные научные публикации 🖈

тов фирмы ALTECO MEDICAL (Швеция), разработавшими массообменный модуль с гемосорбентом ЛПС-эндотоксина, перфузия крови через который обеспечивала эффективную элиминацию бактериального липополисахарида.

Приведенные выше типы медицинских изделий зарегистрированы в Российской Федерации, но их очень высокая стоимость (от 3 до 8 тысяч евро) сдерживает широкое применение на пространстве стран СНГ [2].

Цель исследования: Разработка отечественного био-

Таблица 1 – Динамика изменения цитологических показателей крови при стендовой перфузии через гидрогелевую полиакриламидную матрицу с или без полимиксина

Условия	Эритроциты, 10 ¹² /л	Гемоглобин, г\л	Гематокрит, %	Лейкоциты, 10 ⁹ /л	Лимфоциты, %	Моноциты, %	Гранулоциты , %	Тромбоциты, 10 ⁹ /л	
экспери	Полиакриламидный гель (контроль)							10 / 31	
мента	полиакриламидный тель (контроль)								
Исходные данные	4.23±0.103	133±2.023	38.2±0.467	6.6±0.683	23.3±3.793	5.8±0.627	73.6±3.193	225±35.971	
30 минут перфузии	3.85±0.075*	120±1.966*	34.8±0.467*	5.6±0.608	21.9±2.163	5.1±3.25	73.9±2.248	185±18.042	
60 минут перфузии	3.84±0.054*	118±2.176*	35.0±0.522*	5.5±0.628	23.9±2.892	4.3±0.128*	71.8±2.947	189±17.177	
90 минут перфузии	3.84±0.099*	119±3.253*	34.9±0.846*	5.3±0.500	22.2±2.235	3.3±0.373*	73.8±2.598	202±12.663	
120 минут перфузии	3.81±0.063*	119±1.740*	34.5±0.322*	5.4±0.639	22.5±2.277	4.5±0.248	73.9±2.257	193±15.090	
			Антили	пополиса	харидный с	сорбент (о	пыт)		
Исходные данные	3.92±0.240	135±4.934	37.9±1.446	5.2±0.441	26.3±2.282	6.8±0.565	68.3±2.059	205±18.057	
30 минут перфузии	3.77±0.193	125±4.970	35.2±1.568	4.3±0.241	27.3±2.093	6.2±0.387	67.8±1.757	173±11.200	
60 минут перфузии	3.77±0.293	125±6.485	35.5±1.855	4.2±0.254	26.7±2.108	5.8±0.344*	68.0±1.905	176±10.177	
90 минут перфузии	3.72±0.202	125±6.627	35.0±1.535	4.3±0.239	26.8±2.293	6.5±0.280	67.3±2.139	171±11.311	
120 минут перфузии	3.74±0.199	126±4.690	35.6±1.271	4.5±0.322	26.7±2.059	5.8±0.658	67.5±2.291	182±12.311	

Продолжение таблицы 1.

Условия	MCV,	MCH,	MCHC,	RDW,	MPV,	PCT,	PDW,	
эксперимента	фл	ПГ	г/л	%	фл	%	%	
	Полиакриламидный гель (контроль)							
		• • • •						
Исходные	90.6±1.648	31.9±1.107	347±3.619	14.2±0.408	6.8±0.285	0.171 ± 0.015	17.1±0.690	
данные								
30 минут	90.5±1.512	31.2±0.756	344±3.018	14.2±0.475	7.3±0.430	0.152 ± 0.010	17.0±0.384	
перфузии								
60 минут	91.1±1.394	30.8±0.619	338±2.291	14.3±0.430	7.5±0.191	0.140 ± 0.014	16.8±0.363	
перфузии								
90 минут	90.8±1.318	30.9±0.598	340±2.151	14.3±0.377	7.5±0.226	0.154±0.011	17.1±0.400	
перфузии								
120 минут	90.5±1.539	31.1±0.589	344±2.201	14.1±0.423	7.1±0.307	0.150±0.008	17.2±0.286	
перфузии								
	Ант	гилипополі	исахаридный	і гемосорбе	нт (опыт)			
Исходные	93.1±1.914	32.9±0.832	354±2.556	13.0±0.230	6.9±0.207	0.164±0.014	16.7±0.537	
данные								
30 минут	92.8±1.829	32.4±0.760	349±1.956	13.1±0.288	7.1±0.243	0.133±0.007	16.6±0.253	
перфузии								
60 минут	92.7±1.959	32.1±0.783	347±1.643*	13.1±0.340	7.1±0.301	0.134±0.009	16.6±0.285	
перфузии								
90 минут	93.2±2.099	31.9±0.804	343±2.462**	13.2±0.325*	7.1±0.233	0.132±0.010	16.7±0.274	
перфузии								
120 минут	92.5±1.820	31.9±0.752	346±2.369**	13.2±0.264	7.0±0.306	0.139±0.012	17.1±0.259	
перфузии								
Примечание: * и*	Примечание: * и** –достоверность различий по отношению к исходным данным (до гемоперфузии)							

Примечание: * и** –достоверность различий по отношению к исходным данным (до гемоперфузии) аналогичному временному интервалу контрольной серии, соответственно, при уровне значимости P < 0.05

☆ Оригинальные научные публикации

специфического, антилипополисахаридного гемосорбента.

Учитывая большой опыт белорусских ученых по разработке изделий данного типа, коллективом исследователей под руководством: проф. Гапановича В.Н. (РНПЦ ТиГ/УП «ЛОТИОС»), проф. Кирковского В.В. (БГМУ) и проф. Голубовича В.П. (ИБОХ НАН Беларуси) был реализован комплекс задач по конструированию ЛПС-эдотоксинсвязывающего гемосорбента на основе полиакриламидного гидрогеля с ковалентно сшитым полимиксином В/колистином, включенных в оригинальный массообменный модуль, всесторонней экспериментальной оценке устройства для гемосорбции и проведению его клинических испытаний [2, 6].

Настоящее сообщение посвящено отдельным этапам экспериментальной оценки разработанного антилипополисахаридного гемосорбента (анти-ЛПС гемосорбент).

Материалы и методы: Объектом исследования являлись массообменный модуль с биоспецифическим анти-ЛПСгемосорбентом.

Исследование гемосовместимости анти-ЛПС гемосорбента включало оценку биохимического, гемостазиологического и биофизического состояния компонентов крови после ее контакта с разработанным гемосорбентом.

Изучение гематокритного числа, концентрации гемоглобина, количества форменных элементов крови, ряда производных показателей выполнены на анализаторе крови (Coulter® A© TdiffTM Analyzer, Beckman,

США) [10, 12]. Оценка состояния вторичного гемостаза проведены на коагулогическом анализаторе «ACL 7000» (Instrumentation Laboratory, США) [10,12].

Коагуляционное звено системы гемостаза исследовано с учетом всех фаз свертывающего процесса: І фаза — активированное частичное тромбиновое время (АЧТВ), ІІ фаза — протромбиновое время (ПВ) и активность факторов протромбинового комплекса (ПФ, %), ІІІ фаза — количество фибрниногена (ФГ), тромбиновое время (ТВ). Антикоагулянтный потенциал оценивали по активности антитромбина — ІІІ (АТ-ІІІ), о фибринолитической системе крови судили по результатам метода эуглобулинового фибринолиза (ЭФ) и активности плазминогена (ПЛГ). Дополнительно ставились реакции на растворимые комплексы фибрин- мономеров с этанолом и протамин - сульфатом[12].

Изучение влияния стендовой сорбции на процессы перикисного окисления липидов (ПОЛ) плазмы донорской крови проведено путем измерения содержания в плазме крови диеновых и триеновых конъюгатов (ДК и ТК), а также малонового диальдегида (МДА) (соответственно, промежуточных и конечных продуктов) — интегральных показателей, отражающих интенсивность и направленность перекисно-радикальных реакций с участием липидов [12].

Изучение влияния анти-ЛПС гемосорбента на показатели крови доноров проведено в условиях модельной гемосорбции (in vitro) крови 12 здоровых доноров.

Таблица 2 – Динамика изменений показателей коагуляционного гемостаза в процессе прохождения донорской крови через массообменный модуль содержащий гидрогелевую матрицу без антибиотика

Условия	АЧТВ,	ПВ,	ПФ,	Φг,	TB,	AT-III,	ПЛГ,	ЭФ,
эксперимента	c	c	%	г/л	c	%	%	мин
Исходные	29.9±1.17	9.4±0.91	110.8±2.20	3.7±0.22	12.1±0.38	111.5±13.50	104.0±6.66	205.0±5.48
данные								
30 минут	31.8±0.92	10.2±0.33	98.2±3.50*	3.2±0.29	13.7±0.52	92.0±8.00	91.0±4.36	205.8±7.12
перфузии								
60 минут	32.0±0.84	10.3±0.31	97.8±2.66*	3.1±0.25	14.0±0.75*	89.0±10.00	92.3±8.45	198.0±6.79
перфузии								
90 минут	32.2±0.91	10.3±0.31*	97.8±3.76*	3.2±0.26	13.8±0.61*	88.5±9.50	92.7±6.49	199.2±7.79
перфузии								
120 минут	32.2±0.81	10.4±0.28	96.2±2.83*	3.2±0.30	13.8±0.55*	87.5±8.50	92.0±8.08	199.2±9.26
перфузии								
_								
Примечание:*-достоверность отличий по отношению к исходным данным при уровне значимости Р <0.05								

Таблица 3 – Динамика изменений показателей коагуляционного гемостаза в процессе стендовой сорбции донорской крови на анти- ЛПС гемосорбенте

Условия	АПТВ,	ПВ,	ПФ,	Φг,	TB,	ПЛГ,	ЭФ,
эксперимента	С	С	%	г/л	С	%	мин.
Исходные данные	29.2±1.57	9.4±0.25	111±4.79	3.4 ± 0.43	13.0±0.78	109.3±13.86	213.3±4.22
30 минут перфузии	32.2±1.49	10.2±0.32	99.7±6.33	2.7±0.37	13.8±1.11	100.0±5.69	207.5±5.74
60 минут перфузии	32.9±1.39	10.4±0.39	97.3±6.74	2.8±0.37	13.8±1.14	81.5±13.50	215.8±2.01
90 минут перфузии	31.3±1.73	10.3±1.90	98.5±5.71	2.8±0.40	13.2±1.30	96.0±7.50	210.8±3.27
120 минут	31.1±1.72	10.3±0.44	99.3±6.30	2.9±0.38	13.4±1.33	101.0±10.02	211.7±2.11
перфузии							

В качестве контроля использовали донорскую кровь, пропущенную через массообменный модуль, содержащий гидрогелевую полиакриламидную матрицу без антибиотика.

Статистическую обработку полученных данных проводили на ЭВМ с использованием программы статистических расчетов Stadia (версия 4.10/9.91).

Результаты исследования: Как следует из приведенных в таблице 1 данных, в контрольной серии через 30, 60, 90 и 120 минут после начала перфузии крови через массообменный модуль наблюдалось статистически значимое уменьшение количества эритроцитов -до 91%, 90.7%, 90.7% и 90.1% соответственно. Практически в этот же временной интервал (15-120 мин после начала сорбции) происходило достоверное снижение количества гемоглобина- до 93.9%, 90.0%, 89%, 89% и 89.5% по отношению к изначальным данным, соответственно, что, очевидно, было обусловлено параллельно отмечаемым снижением гематокритного числа- до 94.2%, 91.0%, 91.6%, 91.4%и 90.3%, соответственно, вызванным «уравновешиванием» системы полиакриламидный гидрогель — кровь.

В опытной серии в исследуемые сроки прослеживались те же тенденции, не достигающие уровня значимых различий.

Общее количество лейкоцитов и их различных форм крови в обеих сериях эксперимента снижалось незначительно, а отмеченные сдвиги были недостоверны как относительно исходных данных, так и при сравнении в сопоставимые временные интервалы. Исключение составили моноциты. Так в контрольной серии их количество достоверно уменьшалось к 60 и 90 мин гемоперфузии на 25.8% и 43.1%, соответственно. Количество тромбоцитов в обеих сериях опыта снижалось незначительно, и было недостоверным на протяжении всего эксперимента.

Полученные результаты свидетельствуют о том, что в условиях модельной гемоперфузии анти -ЛПС гемосорбент не вызывает каких-либо существенных изменений в клеточном составе крови, что, наряду с аналогичным влиянием полиакриламидной гидрогелевой матрицы, позволяет сделать вывод об удовлетварительной гемосовместимости как самого носителя, так и готового изделия при их использовании в реальном режиме гемоперфузии.

Согласно полученным данным по изучению агрегационных свойств тромбоцитов в исходном состоянии отмечалось два типа развития агрегационного процесса в ответ на действие индуктора (АДФ) нормо- и гиперагрегация. Нормальная агрегация тромбоцитов, которая

Таблица 4 — Содержание продуктов ПОЛ в донорской крови в процессе ее стендовой гемоперфузии через гидрогелевую полиакриламидную матрицу

Условия	ТК, ед.	ДК, ед.	Неокисленые	Индекс	МДА,
эксперимента	ОП/мл	ОП/мл	липиды, ед.	окисления	нМ/мл
			ОП/мл	плазмы	
Исходные данные	0.50 ± 0.022	1.60 ± 0.144	3.49±0.205	0.48 ± 0.065	4.96±0.571
30 минут	0.48 ± 0.026	1.43±0.095	3.38±0.219	0.42 ± 0.062	3.96±0.277
перфузии					
60 минут	0.48 ± 0.024	1.54±0.099	3.40±0.215	0.47 ± 0.062	3.99±0.200
перфузии					
90 минут	0.46 ± 0.019	1.56±0.114	3.37±0.219	0.48 ± 0.068	4.17±0.428
перфузии					
120 минут	0.48 ± 0.021	1.57±0.115	3.40±0.212	0.48 ± 0.067	4.08±0.402
перфузии					

Таблица 5 — Содержание продуктов ПОЛ в донорской крови в процессе ее стендовой перфузии через анти-ЛПС гемосорбент

Условия эксперимента	ТК, ед. ОП/мл	ДК, ед. ОП/мл	Неокисленые липиды, ед. ОП/мл	Индекс окисления плазмы	МДА, нМ/мл
Исходные данные	0.50±0.024	1.44±0.115	3.63±0.115	0.40±0.045	4.29±0.329
30 минут перфузии	0.48±0.013	1.40±0.114	3.53±0.123	0.40 ± 0.048	3.78±0.366
60 минут перфузии	0.49±0.020	1.44±0.125	3.55±0.117	0.41±0.048	3.66±0.215
90 минут перфузии	0.49±0.027	1.46±0.114	3.57±0.129	0.42±0.049	3.92±0.245
120 минут перфузии	0.50±0.025	1.49±0.110	3.57±0.134	0.42±0.049	4.01±0.119

☆ Оригинальные научные публикации

выявлялась у 50% доноров, характеризовалась наличием обратимой (первичной) агрегации с последующей дезагрегацией в ответ на низкую дозу индуктора (0.5 мкмоль/л) и развитием необратимой (секреторной) двухфазной двухволновой агрегации тромбоцитов в ответ на высокую дозу АДФ (1.5 мкмоль/л). Гиперагрегация тромбоцитов (50% доноров) отличалась развитием необратимой двухфазной двухволновой или двухфазной одноволновой агрегации тромбоцитов в ответ как на высокую, так и на низкую дозы индуктора.

Степень и скорость агрегации у доноров, имеющих в исходном состоянии нормальную агрегацию, во все сроки исследования оставались без изменений. Эти же показатели агрегационной активности тромбоцитов у доноров с исходной гиперагрегацией достоверно снижались после 30 минут сорбции. К концу исследования (120 мин) активность тромбоцитов, индуцируемая высокой дозой АДФ, была приближена к исходному состоянию, а низкой дозой АДФ — оставалась достоверно сниженной. Время агрегации при использовании малых доз АДФ сохранялось практически неизменным, а при дозе 1.5 мкМ отмечалась тенденция к уменьшению на протяжении всего периода исследования, однако статистически достоверных различий не регистрировали.

В опытной серии общая направленность изменений агрегационных параметров тромбоцитов, по сравнению с контрольной сохранялась.

Анализ эритрограмм эритроцитов не выявил существенных различий в их способности к агрегации как при прохождении крови через полиакриламидный гидрогель, так и анти-ЛПС гемосорбент, независимо от продолжительности перфузии.

Таким образом, данные, полученные при исследовании влияния гемосорбции на первичный гемостаз, свидетельствуют, что процесс сорбции не влияет на агрегационные характеристики эритроцитов и тромбоцитов с исходно нормальной агрегацией, оказывая ингибирующее влияние на тромбоциты с исходно повышенной агрегационной активностью.

Как показали исследования, после прохождения крови по экстракорпоральному контуру в обеих сериях опыта активность І фазы коагуляционного каскада не изменилась (табл. 2 и 3). В контрольной серии отмечалось статистическое значимое снижение активности факторов протромбинового комплекса, начиная с 30 минуты от начала сорбции и до конца эксперимента, на 8-10% по сравнению с исходными данными, и недостоверное увеличение протромбинового времени в этот же временной интервал исследований. Содержание фибриногена в донорской крови, проходящей через анти- ЛПС гемосорбент недостоверно снизилось на 15 минуте перфузии по сравнению с исходным значением и оставалось таковым на последующих сроках наблюдения. Отмеченые изменения статистически не выходили за пределы физиологической нормы. Уровень фибриногена при гемосорбции на «холостом» полиакриламидном гидрогелевом носителе практически не отличался от исходных данных.

Таким образом, проведенные исследования показа-

ли, что контакт крови с гидрогелевой матрицей приводит к некоторому снижению активности факторов протромбинового комплекса и увеличению протромбинового и тромбиновго времени, тогда как антилипополисахаридный сорбент не оказывает негативного влияния на показатели свертывающей системы крови.

При исследовании влияния стендовой перфузии крови на динамику изменений системы ПОЛ было установлено, что ни гидрогелевая полиакриламидная матрица, ни анти-ЛПС гемосорбент не вызывают изменений уровня основных показателей ПОЛ (таб. 4, 5). что является косвенным следствием отсутствия повреждающего действия гемосорбента на форменные элементы крови.

Таким образом, при перфузии крови через анти-ЛПСгемосорбент не происходит достоверного уменьшения количества форменных элементов крови, гемоглобина и уровня гематокрита, а также достоверных изменений основных показателей ПОЛ. Полученные результаты свидетельствуют о том, что разработанный на основе полиакриламидного гидрогеля с ковалентно сшитым антибиотиком полимиксином В/колистином анти- ЛПС гемосорбент в режиме реальной гемосорбции в стендовых условиях in vitro не вызывает негативного влияния на показатели свертывающей сиситемы крови, не влияет на агрегационные свойства эритроцитов и тромбоцитов с исходно нормальной агрегацией, оказывая ингибирующее влияний на тромбоциты с исходно повышенной агрегационной активностью. Перечисленные особенности указывают на хорошую гемосовместимость разрабатываемого устройства, что чрезвычайно важно для гемосорбента, область применения которого предполагает наличие изначальных существенных отклонений клеточного, гемостазиологического, агрегационного и биохимического гомеостаза организма.

Литература

- 1. Белобородов, В. Б., Белокрылина И. Ю. Сепсис: что делать? Медицина для всех №5, 1998, стр.4.
- 2. Введенский, Д. В., Кирковский В. В., Гапанович В. Н. Клиническая эффективность биоспецифического гемосорбента «Липосорб» Вестник РАМН 2009, стр. 40.
- 3. Кирковский, В. В. Детоксикационная терапия при перитоните. Минск, 1997, стр.12.
- 4. Dinna, N. Cruz, Mark A. Parazella, and others. Effectivness of Polymyxin-B immobilized fiber column in sepsis: a systematic review. Critical care Vol.11№2.
- 5. Hedehiko, Kushi, Jun Nakahara. Hemoperfusion wiyh an immobilized Polymyxin- B column reduces the blood level of Neutrophil elastase. Therapeutic Apheresis and Dialysis, 8(4), 303–307, 2005.
- 6. Kanesaka, S., Sasaki J., Kusume et.all: Effekt of direck hemoperfusion using Polymyxin B immobilized fiber on inflammatory mediators in patients with.
- 7. Kodama, M., Tani, T. Treatment of sepsis by plasma endotoxin removel: hemoperfusion using a Polymixin-B immobilized column. «Journal of endotoxin research 1997» 4(4), 293–300.
- 8. Tsukasa, Nakamura, Takaharu Matsuda Polymixin B-immobilized fiber Hemoperfusion in patient with sepsis: «Dialysis and Transplantation 2007»
- severe sepsis and septic shock. $^{\circ}$ Int. J. Artifficial organs 2008 $^{\circ}$ 31(10): 891–897.
- 9. «Hospitex Diagnostics». Лабораторное оборудование и реагенты.
- 10. Медведев, В. В. «Клиническая лабораторная диагностика». 2006, стр. 150–330.

Поступила 10.07.2012