Д.В. Лапицкий¹, Р.Ф. Ермолкевич¹, С.М. Метельский¹, А.Н. Ряполов¹, С.М. Иванова¹, И.Б. Бутяновская¹, И.А. Кириллова¹, Е.Э. Токаревская¹, Н.В. Гребень¹, И.А. Маничев², В.Г. Щербицкий²

ОЦЕНКА СОСТОЯНИЯ ОРГАНОВ ДЫХАНИЯ У МОЛОДЫХ МУЖЧИН С НЕТЯЖЕЛОЙ ВНЕБОЛЬНИЧНОЙ ПНЕВМОНИЕЙ НА ОСНОВЕ ИЗУЧЕНИЯ СОДЕРЖАНИЯ КИСЛОРОДА В АРТЕРИАЛЬНОЙ КРОВИ И ГАЗОВ ВЫДЫХАЕМОГО ВОЗДУХА

 Γ У «432 Главный военный клинический медицинский центр $MO\ BC\ PE$ » 1 Лаборатория спирометрии УП «Унитехпром» $E\Gamma$ У 2

Чтобы оценить, соответствует ли состояние клинико-рентгенологического выздоровления после перенесенной внебольничной пневмонии функциональному благополучию органов дыхания, разработана методика оценки физиологического состояния дыхательной системы, основываясь на изучении газов выдыхаемого воздуха (O₂ и CO₂), а также содержания O₂ в артериальной крови. В статье приводится описание разработанной методики и результаты ее применения у молодых мужчин с нетяжелой внебольничной пневмонией. Установлено несоответствие состояния клинико-рентгенологического выздоровления после лечения в установленные сроки нетяжелой внебольничной пневмонии функциональному состоянию дыхательной системы.

Ключевые слова: внебольничная пневмония, давление CO_2 в выдыхаемом воздухе, давление O_2 в артериальной крови, насыщение артериальной крови O_2 , содержание O_2 в артериальной крови, альвеолоартериальная разница по O_2 , функционально мертвое пространство.

D.V. Lapitski, R.F. Ermolkevich, S.M. Metelski, A.N. Ryapolov, S.M. Ivanova, I.B. Butyanovskaya, I.A. Kirillova, I.A. Manichev, V.G. Scherbitski

LUNG CONDITION ASSESSMENT IN YOUNG MEN WITH NON-SEVERE COMMUNITY-ACOUIRED PNEUMONIA (BASED ON ANALYSIS OF ARTERIAL BLOOD OXYGEN -CONTENT AND EXPIRED GASES

In order to assess a correspondence of clinical-X-rayed recovery and lung functional well-being after a community-acquired pneumonia method was developed to estimate physiological lung condition based on analysis of arterial blood O₂-content and expired gases – O₂ and CO₂. A description of developed method and results of its application in young men with non-severe community-acquired pneumonia are made in this article. A mismatch of clinical-X-rayed recovery after a non-severe community-acquired pneumonia treating for prescribed time and lung functional condition was discovered.

Key words: community-acquired pneumonia, expired CO₂-pressure, arterial blood O₂-pressure, arterial blood O_2 -saturation, arterial blood O_2 -content, alveolar-arterial O_2 -difference, functional dead space.

ечение лиц с нетяжелой внебольничной пневмонией **Ј I** (ВП) в течение установленного нормативными документами срока, как правило, заканчивается клиническим или клинико-рентгенологическим выздоровлением [1,2]. В случае клинико-рентгенологического выздоровления проведение контрольного обследования перед выпиской из стационара не выявляет у пациентов, перенесших ВП, значимых клинических симптомов, отклонений показателей крови, функции внешнего дыхания от общепринятых нормативов, не сопровождается остаточными рентгенологическими проявлениями.

Классическими патологоанатомическими изменениями органов дыхания в зоне пневмонического очага считаются: пропитывание экссудатом септального пространства и заполнение им альвеол, тромбоз сосудов в зоне воспаления, стимуляция пролиферации фибробластов макрофагами, рассасывающими экссудат, развитие локального пневмосклероза как исхода воспалительного поражения [3].

Учитывая характер морфологических изменений в легочной ткани при экссудативном воспалении, возникает закономерный вопрос, соответствует ли состояние клинико-рентгенологического выздоровления от ВП функциональному благополучию со стороны органов дыхания.

Цель. Оценить физиологическое состояние органов дыхания у молодых мужчин, переносивших нетяжелую ВП, в остром периоде болезни и при окончании основного курса медикаментозной терапии, приведшей к клиникорентгенологическому выздоровлению.

Задачи исследования:

- 1. Изучить у молодых военнослужащих особенности клинической картины нетяжелой ВП, закончившейся к моменту выписки из стационара клинико-рентгенологическим выздоровлением.
- 2. Разработать методику патофизиологической оценки состояния органов дыхания на основании изучения газового состава выдыхаемого воздуха и метода пульсоксиметрии.
- 3. С помощью разработанной методики оценить состояние органов дыхания у молодых мужчин, переносивших нетяжелую ВП, в остром периоде болезни и при окончании основного курса медикаментозной терапии.

Материалы и методы. Объектом исследования явились 37 молодых мужчин в возрасте от 18 до 25 лет, проходивших лечение в пульмонологическом отделении ГУ «432 ГВКМЦ» в период с 2009 – 2011 гг. с нетяжелой ВП, разрешившейся в срок до 4 недель полным клинико-рентгенологическим выздоровлением. Пациенты с критериями тяжелого течения пневмонии [2] в исследование не включались. Все пациенты были обследованы с применением методов (клинических, лабораторных, инструментальных, функциональных), необходимых для установления окончательного диагноза. Контрольной группой служили 16 здоровых лиц того же возраста.

Для разработки методики патофизиологической оценки состояния органов дыхания проводилось исследование CO_2 и O_2 в выдыхаемом воздухе, а также насыщения артериальной крови O₂ (SpO₂) в течение минуты с помощью отечественного спирографа МАС-1 с встроенными модулями капнометрии, оксиметрии и пульсоксиметрии [4,5]. На рис. 1 и табл. 1 приведены мониторируемые в ходе наблюдения кривые и параметры, получаемые при анализе данных кривых.

Статистическую обработку полученных данных проводили с использованием пакета прикладных программ "Statistica 6,0". Числовые показатели представлены в виде X±s, где X - среднее значение, а s - стандартное отклонение. Для проверки совпадения распределения исследуемых количественных показателей с нормальным в группах пользовались критерием согласия Колмогорова-Смирнова. Для сравнения изучаемых групп применялся

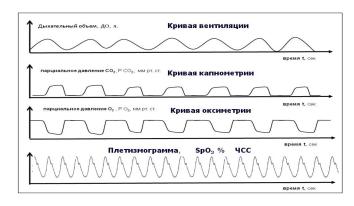


Рис. 1. Мониторируемые кривые на спирографе МАС-1 в течение одной минуты равномерного дыхания.

☆ Оригинальные научные публикации

Таблица 1. Показатели, получаемые при анализе мониторируемых кривых в течение одной минуты равномерного дыхания. (рис. 1)

Параметр	Обозначение, единица измерения
Минутный объем дыхания	МОД, л/мин
Давление CO ₂ в конце выдоха	PetCO ₂ , мм рт.ст.
Среднее давление ${\rm CO_2}$ в выдохнутом воздухе	PeCO ₂ , мм рт. ст.
Концентрация кислорода во вдыхаемом воздухе	FiO ₂ , %
Образование CO ₂	VCO ₂ , мл/мин
Насыщение артериальной крови кислородом	SpO ₂ , %

дисперсионный анализ. Различия считали достоверными при уровне значимости α < 0,05 [6,7].

Результаты и их обсуждение. Клиническая характеристика лиц, переносящих нетяжелую ВП и включенных в исследование, представлена в табл. 2.

В клинической картине заболевания практически у всех молодых лиц были выражены симптомы интоксикации – 81,1%. Самым частым симптомом поражения органов дыхания являлся кашель – 94,6%. Локальные симптомы поражения легочной ткани наблюдались в 67,6% случаев. В процессе лечения симптомы интоксикации, локального поражения легочной ткани разрешились. Средняя продолжительность лечения составила 14,3±1,4 дня.

В таблице 3 представлена рентгенологическая характеристика пациентов изучаемой группы. Инфильтрация в границах одного сегмента легочной ткани выявлена в 70,3% случаев. В результате проведенного лечения инфильтративные изменения в легочной ткани разрешились у всех пациентов. Картина периферической крови характеризовалась наличием лейкоцитоза — 54,9%, палочко-ядерного сдвига — 77,5%, увеличением СОЭ — 76,5% (табл. 4).

Таблица 2. Характеристика клинической картины у лиц с нетяжелой ВП, включенных в группу исследования

Симптомы	Клиническая характеристика больных ВП (n=37) (%)
Гипертермия	81,1
Озноб	43,2
Потливость	59,5
Слабость	78,4
Симптомы поражения верхних дыхательных путей	40,5
Кашель	94,6
Наличие мокроты: - слизистая -	59,5 37,8
- гнойная	21,6
Плевральная боль	62,2
Притупление перкуторного звука	43,2
Дыхание - жесткое - ослабленное	8,1 62,2
Хрипы - Сухие - Влажные	21,6 16,2
Крепитация	10,8

Таблица 3 **Объем поражения легочной ткани у больных внебольничной** пневмонией военнослужащих

Объем поражения	Характеристика больных ВП (n=37) (%)
один сегмент	70,3
несколько сегментов	21,6
двусторонний процесс	8,1

Таблица 4 Показатели периферической крови у больных внебольничной пневмонией военнослужащих

Показатели ОАК	Характеристика больных ВП (n=37) (%)
Лейкоциты Менее 4х10 ⁹ /л Более 9х10 ⁹ /л	3,9 54,9
Полиморфно-ядерный сдвиг	77,5
СОЭ более 15, мм/ч	76,5

Патофизиологическое состояние органов дыхания изучалось в группе исследования (37 чел.) после устранения лихорадки и перед выпиской, а также в контрольной группе (16 чел.) по следующим группам показателей:

- 1. Показатели, связанные с внешней вентиляцией: МОД, PetCO₂, PeCO₂, VCO₂.
- 2. Показатели, отражающие состав крови в капиллярах малого круга кровообращения: PcO_2 , мм рт.ст. (давление O_2 в капиллярах), ScO_2 , % (насыщение капиллярной крови O_2), CcO_2 мл/л (содержание O_2 в капиллярной крови).
- 3. Показатели, отражающие эффективность газообмена в альвеолах: $P_{A-a}O_2$, мм рт.ст. (альвеоло-артериальная разница по O_2), РИ (респираторный индекс), Vd/Vt, % (функционально мертвое пространство).
- 4. Показатели, свидетельствующие об эффективности насыщения артериальной крови большого круга кровообращения кислородом: PaO_2 , мм рт.ст. (давление O_2 в артериях), SpO_2 , % (насыщение артериальной крови O_2), CaO_2 мл/л (содержание O_2 в артериальной крови).

Некоторые показатели являются производными от непосредственно измеряемых методом капнометрии, оксиметрии, пульсоксиметрии. Формулы их расчета приведены в табл. 5 [8,10,11,12].

Для определения давления O_2 в артериях (PaO_2), альвеоло-артериальной разницы по кислороду PA- aO_2 , как обобщенного показателя эффективности оксигенации в малом круге кровообращения, требуется переход от значения насыщения артериальной крови кислородом (SaO_2 , %), измеренного методом пульсоксиметрии (SpO_2 , %) к PaO_2 . Этот переход осуществляется по кривой диссоциации оксигемоглобина, предварительно откалиброванной для каждого конкретного пациента [9]. Кривая диссоциации оксигемоглобина описывается следующим математическим выражением:

$$PO2 = P50 \times \sqrt[n]{\frac{SO2}{(1 - SO2)}}$$

Перед исследованием газов выдыхаемого воздуха пациенту проводится определение газового состава пе-

Обозначение, едини-Параметр Способ расчета Трактовка ца измерения Давление О2 в альве-Давление, под которым происходит диф-(Pb-47) xFiO₂ олах PAO_2 , мм рт. ст. фузия О2 через альвеолокапиллярную $1,25 \times PetCO_2$ мембрану Функциональное PetCO2 - PeCO2 Доля не кровоснабжаемого, но вентилируемертвое пространмого объема легких PetCO2 ство Альвеоло-артериаль-Комплексный показатель, отражающий ная разница по О2 Р_{А-а}, мм рт. ст. PAO₂ - PaO₂ эффективность органов дыхания по насыщению кислородом артериальной крови Респираторный Показатель, характеризующий долю шунти-РИ PaO₂/FiO₂ индекс руемой в малом круге крови Содержание О2 в CO_2 , мл/л $1,34xHb*xSpO_2 + 0,031xPaO_2$ Отражает количество кислорода в крови крови

Таблица 5 Физиологические параметры функционирования органов дыхания.

риферической капиллярной крови (малотравматичное и доступное исследование), что позволяет установить неизвестные коэффициенты приведенного уравнения - P50 и n. В дальнейшем данное математическое выражение служит механизмом определения PaO₂, мм рт. ст., по измерениям SaO₂ методом пульсоксиметрии – SpO₂, допуская равенство SpO_2 и SaO_2 , (рис. 2).

В таблице 6 представлены физиологические показатели, связанные с внешней вентиляцией. Итак, в начале заболевания у больных ВП значения МОД выше по сравнению с состоянием излечения и контрольной группой, что является закономерной реакцией органов дыхания на воспалительный процесс. Давление СО2 в конце выдоха в группе заболевших ниже, чем в контрольной группе, что можно объяснить повышением у данных лиц МОД. Образование СО₂ в начале заболевания превышает таковое при выздоровлении в связи с нарастанием катаболических процессов в организме больного ВП. Но образование СО₂ в контрольной группе выше по сравнению с больными, вероятно, из-за снижения двигательной активности последних на фоне заболевания.

В таблице 7 представлены физиологические пока-

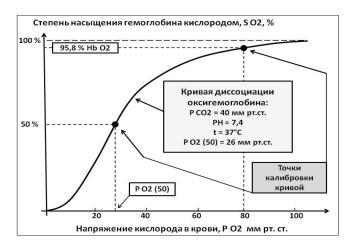


Рис. 2. Кривая диссоциации оксигемоглобина (с указанием точек калибровки для конкретного пациента).

затели, отражающие состав крови в капиллярах малого круга кровообращения, таблице 8 - показатели, характеризующие кислородный состав артериальной крови у лиц исследуемой и контрольной групп.

Показатели кислородного статуса капиллярной крови малого круга кровообращения в группах наблюдения не отличаются, что свидетельствует о достаточной оксигенации венозной крови в неповрежденной воспалением легочной паренхиме.

Следует отметить нарастание давления кислорода в артериальной крови (РаО2, мм рт.ст.) и насыщение гемоглобина кислородом (SpO2) у лиц с ВП в процессе лечения, что свидетельствует об улучшении процессов артериализации венозной крови в легких. Но в целом эти показатели не достигают значений, характерных для здоровых лиц. Содержание кислорода в артериальной крови (СаО2, мл/л) у больных ВП и при их выздоровлении существенно не отличается и значительно меньше по сравнению со здоровыми лицами.

Альвеоло-артериальная разница по кислороду (РАа02, мм рт.ст.), как комплексный показатель качества оксигенации венозной крови в легких, превышает нормальные значения в начале заболевания и полностью не нормализуется к завершению стационарного лечения. Респираторный индекс (РИ), характеризующий венозную примесь к артериальной крови, существенно отличается у лиц с ВП от здоровых в начале болезни и не восстанавливается к завершению стационарного лечения. Функционально мертвое пространство в группе больных ВП в начале болезни и при разрешении заболевания превышает таковое в контрольной группе, что объясняется наличием некровоснабжаемой паренхимы при воспалительном поражении органов дыхания.

1. В клинической картине нетяжелой ВП преобладали симптомы интоксикации – 81,1%. Самым частым симптомом поражения органов дыхания являлся кашель - 94,6%. Локальные симптомы поражения легочной ткани выявлены в 67,6% случаев. Рентгенологически инфильтрация в границах одного сегмента легочной

^{*} Hb - гемоглобин крови г/л.

🖈 Оригинальные научные публикации 💮 Новые технологии в медицине

Таблица 6 Показатели, связанные с внешней вентиляцией у лиц с нетяжелой ВП (37 чел.) в начале заболевания и при клинико-рентгенологическом выздоровлении по сравнению со здоровыми лицами (X±s).

	Лица с ВП		Здоровые	Сравнения		
Показатели	в начале заболевания (I)	после лечения(II)	(III)	p I - II	p I - III	p II - III
МОД, л/мин	12,6±2,1	10,7±2,8	9,6±1,7	<0,01	<0,001	>0,05
PetCO ₂ , мм рт.ст.	36,3±2,7	36,0±3,17	38,7±4,4	>0,05	<0,05	<0,05
PeCO ₂ , мм рт.ст.	28,6±2,9	28,6±3,4	28,9±1,8	>0,05	>0,05	>0,05
VCO ₂ , мл/мин	358,2±54,0	301,7±63,4	389,7±83,8	<0,01	>0,05	<0,001

Таблица 7 Показатели, отражающие состав крови в капиллярах малого круга кровообращения у лиц с нетяжелой ВП (37 чел.) в начале заболевания и при клинико-рентгенологическом выздоровлении по сравнению со здоровыми лицами (X±s).

	Лица с ВП		Здоровые	Сравнения			
Показатели	в начале заболевания (I)	после лечения (II)	(III)		p I - III	p II - III	
ScO2, %	98,1±0,3	98,1±0,3	97,8±0,5	>0,05	>0,05	>0,05	
РсО2, мм рт.ст.	101,4±3,8	102,6±4,0	104,1±6,5	>0,05	>0,05	>0,05	
СсО2, мл/л	193,6±11,2	195,2±13,9	201,8±16,3	>0,05	>0,05	>0,05	

Таблица 8 Показатели, характеризующие кислородный состав артериальной крови у лиц с нетяжелой ВП (37 чел.) в начале заболевания и при клинико-рентгенологическом выздоровлении по сравнению со здоровыми лицами (X±s).

	Лица с ВП		Здоровые	Сравнения		
Показатели	в начале заболевания (I)	после лечения II)		p I - II	p I - III	p II - III
SpO ₂ , %	95,9±1,75	96,8±0,92	97,6±0,54	<0,05	<0,001	>0,05
PaO ₂ , мм рт.ст.	77,9±10,4	83,7±9,5	96,6±8,3	<0,05	<0,001	<0,001
CaO ₂ , мл/л	191,3±11,3	190,9±12,8	200,7±16,0	>0,05	<0,05	<0,05

Таблица 9 Показатели, характеризующие эффективность газообмена в альвеолах у лиц с нетяжелой ВП (37 чел.) в начале заболевания и при клиникорентгенологическом выздоровлении по сравнению со здоровыми лицами (X±s).

	Лица с ВП		Здоровые	Сравнения			
Показатели	в начале заболевания (I)	после лечения (II)	(III)		p I - III	p II - III	
РА-аО2, мм рт.ст.	23,8±11,2	18,7±8,4	7,2±3,5	=0,06	<0,001	<0,001	
РИ	370,8±49,5	398,8±45,3	464,2±36,0	<0,05	<0,001	<0,001	
Vd/Vt, %	31,0±7,5	31,3±6,9	25,6±5,5	>0,05	<0,05	<0,05	

ткани определялась в 70,3% случаев. Лабораторные проявления воспалительного процесса отмечены в 77,5% случаев.

2. У лиц с нетяжелой ВП развитии воспалительной инфильтрации в легочной паренхиме возрастает шунтирование крови в малом круге мимо зоны воспаления и прилежащей к воспалительному очагу неповрежденной легочной ткани из-за тромбоза сосудов в зоне воспаления и анатомических особенностей расположения сосудистых шунтов в малом круге. Данные процессы проявляются снижением насыщения артериальной крови кислородом (PaO2, SpO2, CaO2), повышением функционально мертвого пространства (Vd/Vt), увеличением альвеоло-артериальной разницы по кислороду (РА-аО2). Поддержание нормальных показателей оксигенации венозной крови в легочных капиллярах неповрежденной паренхимы (ScO2, PcO2, CcO2) осуществляется за счет гипервентиляции (повышение МОД, снижение PetCO2).

- 3. К моменту завершения стационарного лечения с достижением клинико-рентгенологического выздоровления выявлено отсутствие полной нормализации кислородного статуса артериальной крови. Данный факт свидетельствует о том, что процессы репарации легочной паренхимы происходят дольше, чем установленные сроки лечения.
- 4. Методика оценки функционирования органов дыхания с помощью изучения газового состава выдыхаемого воздуха и кислородного статуса артериальной крови позволяет осознанно подходить к диспансеризации больных, перенесших ВП, и дает врачу реальные параметры, нормализацию которых необходимо отслеживать в процессе наблюдения за больными.

Литература

- 1. Ориентировочные сроки временной нетрудоспособности при основных видах терапевтической, хирургической и офтальмологической патологии (инструкция по применению) / Министерство здравоохранения Республики Беларусь, 2006. – 34c.
- 2. Клинический протокол диагностики и лечения пневмоний / Приложение 2 к приказу Министерства здравоохранения Республики Беларусь 5.07.2012г. №768. – 20c.
- 3. Струков, А.И., Серов В.В. Патологическая анатомия. - 1995. - С. 319 - 326.
- 4. Филиппович, Г.В. Эволюция в технологиях капнометрии. Микроструйная капнометрия. – www. critical.ru/consult/ pages/microstream1.
- 5. Шурыгин, И.А. Мониторинг дыхания в анестезиологии и интенсивной терапии. - Диалект. - 2003. - 415 с.
- 6. Халафян. А.А. Математическая статистика с элементами теории вероятностей (учебник). - М.: Бином, 2010. - 496 с.
- 7. Флетчер, Р., Флетчер С., Вагнер Э. Клиническая эпидемиология. Основы доказательной медицины. – М.: МедиаСфера, 1998. – 352с.
- 8. Huges, J.M.B. Physiology and Practice of Pulmonary Function. Association for Respiratory Technology and Physiology. – 2009. – 323p.
- 9. *Гриппи, М.А.* Патофизиология легких. М.: Бином, 1997. 344c. 10. A tidally breathing model of ventilation, perfusion and volume in normal and diseased lungs / Yem J.S., Turner M.J., Baker A.B. et al. //
- British Journal of Anaesthesia. 2006. V.5. P. 718-731. 11. Rump, T.H., Krismaric M., Grmec S. Capnometry in suspected pulmonary embolism with positive D-dimer in the field // Critical Care. - 2009. - V. 13. - N 6 - R 196 - P. 1-9.
- 12. Lawrence, H.B., John E.G., Rosa H.S. Can Quantitative Capnometry Differentiate Between Cardiac and Obstructive Causes of Respiratory Distress? // Chest. - 1998. - V. 113. P. 323-326.

Поступила 26.04.2013 г.