Н. В. Завада¹, А. Ч. Часнойть¹, Т. Э. Владимирская² МОРФОЛОГИЧЕСКИЕ ИЗМЕНЕНИЯ ТКАНИ ПЕЧЕНИ ПОСЛЕ ПРИМЕНЕНИЯ МОНОПОЛЯРНОЙ ЭЛЕКТРОКОАГУЛЯЦИИ

ГУ «Белорусская медицинская академия последипломного образования»¹, Центральная научно-исследовательская лаборатория БелМАПО²

В статье представлены результаты морфологического и морфометрического исследований ткани печени после применения высокочастотного электрохирургического генератора в различных режимах коагуляции на 3 уровнях мощности в остром эксперименте, а также на 3 и 7 сутки после воздействия. Определены закономерности развития патологических процессов в зоне поражения, а также оптимальный режим работы монополярной коагуляции.

Ключевые слова: местный гемостаз, электрокоагуляция, монополярная коагуляция.

N.V. Zavada, A.Ch. Chaisnots, T.E. Vladimirskaya MORPHOLOGICAL CHANGES IN LIVER TISSUE AFTER USING MONOPOLAR ELECTROCOAGULATION

The article presents the results of morphological and morphometrical research of liver tissue after using the monopolar electrocoagulation.

Key words: local, hemostasis electrocoagulation, monopolar coagulation.

Разработка и внедрение новых методов местного гемостаза является одной из наиболее сложных и актуальных проблем абдоминальной хирургии. Безопасное рассечение тканей и надежная остановка кровотечения являются основными условиями использования физических методов гемостаза при выполнении оперативных вмешательств как в открытой, так эндовидеолапароскопической хирургии. Применение высокочастотных электрохирургических генераторов, которые получили наиболее широкое использование в хирургической практике, при несомненных преимуществах имеют ряд отрицательных сторон.

К отрицательным сторонам использования электрохирургической аппаратуры в абдоминальной хирургии в перрегенерации поврежденной печеночной ткани с образованием грубого соединительнотканного рубца. По данным Пряхина А.Н. глубина некроза паренхимы печени после применения электрокоагуляции составила в среднем 2841, 29 ± 129, 6 мкм [4]. Хворостов Е.Д. и соавторы показывают, что при морфологическом исследовании ткани желудка пациентов прооперированных с применением монополярной электрокоагуляции была выявлена широкая зона бокового коагуляционного повреждения, распространяющаяся на все слои стенки желудка, достигая 554,160 ± 34,107 мкм. Даже самые современные аппараты с обратной связью не могут исключить аномальных путей движения электрического тока [5], так как ткани организма человека различа-

Таблица 1 Режимы коагуляции высокочастотного электрохирургического генератора

Режим	Мощность	Вольтаж	Крест фактор	
Контактная коагуляция 1	250W ватт при 500 Омах	max. 2600	3.0	
Контактная коагуляция 2	150W ватт при 200 Омах	max. 4300	5,4	
Спрей коагуляция	120W ватт при 1000 Омах	max. 6000	5,5	

ются по своей структуре и имеют различные физические характеристики [1]. Так по данным E. Trondsen и соавт. [9], при монополярной коагуляции происходит отдаленное повышение температуры в стенке желчного протока и клипсе на пузырном протоке. В своих работах Ю.Г. Пархоменко от-

вую очередь можно отнести образование довольно большой зоны повреждения тканей [3]. При применении монополярной электрокоагуляции в тканях отмечаются интенсивные воспалительные и некротические процессы [8]. По

наблюдениям R. Tucker [10], эти изменения наблюдаются на 4-е сутки после операции. При операциях на печени широкая полоса некроза остается через сутки после воздействия электроножа и продолжает существовать даже на 21-е сутки [6]. Ряд авторов [2,7] в экспериментальных исследованиях доказали неблагоприятное воздействие электрокоагуляции на паренхиму печени в области ложа желчного пузыря при выполнении лапароскопической холецистэктомии. В своих исследованиях они доказали, что в зоне воздействия наблюдаются выраженные деструктивные изменения ткани печени, приводящие к повреждению нормального клеточного строения печени, замедлению процессов режима коагуляции мечает, что при использовании монополярной электрокоагуляции происходит прилипание тканей к рабочей части электрода с последующим обрывом, а коагуляция захватывает в 2 — 3 раза больший объем тканей, приводя в после-

Рисунок 1 – Зависимость мощности режима от выбранной позиции шкалы ежима коасуляции

Таблица 2 – Морфометрические показатели глубины поражения ткани печени в режиме монополярной коагуляции в остром эксперименте.

Режим	Ι		II		III	
	(контактная коагуляция I)		(контактная коагуляция II)		(спрей-режим)	
Глубина поражения	Me (min-max)	25-75 процентили	Me (min-max)	25-75 процентили	Me (min-max)	25-75 процентили
L ¹ , мкм 1/3 мощности	46,0 (9,7-124,3)	25,1-62,2	139,5 (36,7-368,2)	78,1-191,3	435,7 (111,1-1107,9)	241,3-576,2
L ² , мкм 2/3 мощности	97,4 (15,4-284,3)	51,8-132,8	503,8 (161,9-1114,3)	341,2-614,3	736,7 (168,3-2050,8)	412,7-914,3
L ³ , мкм 3/3 мощности	212,6 (38,3-819,0)	102,0-263,5	520,4 (149,2-1384,1)	339,7-644,4	649,8 (130,2-2155,6)	330,2-787,3

Примечания:

1. Имеются достоверные различия в глубине повреждения ткани печени на минимальном уровне мощности I, II и III режимов (n¹_{min}=150, n^{II}_{min}=129, n^{III}_{min}=100, Kruskal-Wallis ANOVA-тест, p<0,001);

2. Имеются достоверные различия в глубине повреждения ткани печени на среднем уровне мощности I, II и III режимов (n'_{med}=150, n''_{med}=140, n'''_{med}=150, Kruskal-Wallis ANOVA-тест, p<0,001);

3. Имеются достоверные различия в глубине повреждения ткани печени на максимальном уровне мощности I, II и III режимов (nⁱ_{max}=125, nⁱⁱ_{max}=150, nⁱⁱⁱ_{max}=150, Kruskal-Wallis ANOVA-тест, p<0,001);

4. п – количество измерений микропрепаратов;

5. L – глубина поражения.

дующем к задержке процессов резорбции и регенерации.

Материал и методы

В работе анализируются результаты экспериментального применения высокочастотного электрохирургического генератора с частотой 400 kHz и мощностью 350W в различных режимах монополярной коагуляции (таблица 1).

Каждый режим испытывался на 3 уровнях мощности: min – 1/3 шкалы мощности, med – 2/3 шкалы мощности, max – максимальный уровень шкалы мощности (рисунок 1).

Исследования проводились на 18 половозрелых кроликах массой 2800-4000 г и включали острые и хронические опыты. В условиях адекватной анестезии, в соответствии с этическими нормами обращения с животными, проводи-

Рисунок 2 – Микрофотографии. Ткань печени после воздействия ВЧ генератора (острый опыт), x100

А – зона коагуляции, Б – зона вапоризации, В – зона кровоизлияния. Окраска гематоксилином и эозином

лась краевая резекция печени кроликов с последующей обработкой раневой поверхности монополярной коагуляцией.

В острых и хронических опытах изучался характер морфологических изменений, глубина повреждения ткани печени, а также течение репаративных процессов в области оперативного вмешательства. Сроки выведения животных составляли 3 и 7 суток после оперативного вмешательства. Как в острых, так и в хронических опытах изучение изменений, образующихся в результате воздействия монополярной коагуляции на ткани печени, проводилось как методом макроскопической оценки, так и морфологическим и морфометрическим методами.

> Иссеченные участки печени кролика фиксировали в 10% нейтральном формалине в течение 48 часов. Затем промывали в проточной воде в течение 24 часов, обезвоживали в спиртах восходящей концентрации (70, 80, 96, абсолютный спирт). Далее материал проводили через спирт-хлороформ, хлороформ, хлороформ-парафин и заливали в парафин. Из парафиновых блоков изготавливали срезы толщиной 4-5 мкм, которые окрашивали гематоксилином и эозином, по Массону.

> Изучение микропрепаратов и изготовление микрофотографий проводили с помощью микроскопа DMLS с программным обеспечением («Leica», Германия). Морфометрический анализ проводился при помощи программно-аппаратного комплекса «Leica-Qwin». Измерения проводили на увеличении 50 в 5 случайно выбранных полях зрения по каждому препарату. При морфологических исследованиях обращали внимание на характерные для заживления обычной раны процессы, связанные с альтерацией, экссудацией, пролиферацией и сте-

А – повреждения ткани печени на минимальном уровне мощности в режиме коагуляция I, Б – повреждения ткани печени на максимальном уровне мощности в режиме «спрей». Окраска гематоксилином и эозином.

пень их выраженности. Кроме того, оценивали выраженность воспалительной реакции, наличие некротических масс, наличие или отсутствие отграничения последних от неповрежденных тканей, измеряли глубину очага воздействия монополярной коагуляции.

Результаты и обсуждение

После воздействия высокочастотного электрохирургического генератора изменения ткани печени в большинстве случаев были однотипными для всех режимов коагуляции и в зависимости от преобладания вида поражений заключались в формировании трех зон повреждения: коагуляции, вапоризации, кровоизлияний (рис. 2).

Было установлено, что после воздействия высокочастотного генератора в режиме коагуляции на минимальном уровне мощности в очаге воздействия преобладали зоны коагуляции и кровоизлияний, а зона вапоризации была минимальной. С увеличением мощности в очаге воздействия преобладали зоны коагуляции (с элементами карбонизации) и вапоризации (рис. 3).

Полости вапоризации представляли собой округлые, часто сливающиеся и образующие кистозоподобные формирования гомогенных оксифильных тяжей, с наличием целых и гемолизированных эритроцитов в просвете. Наиболее обширная зона вапоризации была характерна для режима «спрей» на максимальном уровне мощности (рис. 3).

Изменения сосудов в области воздействия были однотипными для всех режимов и заключались в коагуляции с распадом, фрагментацией и очаговым лизисом стенки вен, артерий, лимфатических сосудов, выпаривании межклеточного вещества экстрацеллюлярного матрикса. Причем при увеличении мощности режима эти изменения носили более выраженный характер, в особенности при использовании режима «спрей» (рис. 4).

Коагуляции с распадом, фрагментацией и очаговым лизисом стенки вены (стрелка). Окраска

гематоксилином и эозином В перифокальных участках определялась зона гепатоцитов с предкоагуляционными (преднекротическими) изменениями: гиперхромные, с пикнотичными и/или набухшими ядрами, клеточные границы нечеткие, цитоплазма конденсирована. Вены были расширены, просветы артерий, лимфатических сосудов, желчных протоков резко сужены или не прослеживались.

Вне зоны повреждения наблюдалось расширение и полнокровие синусоидных капилляров, вен. Отмечалось наличие очагов некроза гепатоцитов в перипортальных зонах и признаки минимального септального фиброза.

При проведении морфометрического исследования подсчитывалась глубина повреждения печеночной ткани (зона коагуляции, вапоризации и кровоизлияния), образующая-

Рисунок 4 – Микрофотография. Ткань печени после воздействия ВЧ генератора в режиме «спрей» (острый опыт), x400

Рисунок 5 – Микрофотография. Ткань печени после воздействия ВЧ генератора (3 сутки), x400

Время	Острый опыт		3 сутки		7 сутки			
выведения Глубина поражения	Me (min-max)	25-75 процентили	Me (min-max)	25-75 процентили	Me (min-max)	25-75 процентили		
L ¹ , мкм II режим, 2/3 мощности	503,8 (161,9-1114,3)	341,2-614,3	118,9 (33,5-286,9)	78,1-153,0	145,3 (58,9-267,8)	111,6-170,6		

Таблица 3 – Морфометрические показатели глубины поражения ткани печени в режиме контактной коагуляции II на среднем уровне мощности в динамике.

1. Примечания:

2. Имеются достоверные различия в глубине повреждения ткани печени на среднем уровне мощности во II режиме монополярной коагуляции в динамике (n_{острый}=140, n_{3 сутки}=150, n_{7 сутки}=95, Kruskal-Wallis ANOVA-тест, p<0,001);

3. n – количество измерений микропрепаратов;

4. L – глубина поражения.

ся при воздействии ВЧ генератора в трех режимах коагуляции на минимальном, среднем и максимальном уровне мощности (табл. 2).

Рисунок 6 – Микрофотография. Ткань печени после воздействия ВЧ генератора (3 сутки), x400

Грануляционная ткань разной степени зрелости (стрелка). Окраска гематоксилином и эозином

Рисунок 7 — Микрофотография. Ткань печени после воздействия ВЧ генератора (7 сутки), x100

Широкая полоса рыхлой фиброзной ткани (стрелка). Окраска гематоксилином и эозином.

При анализе полученных данных мы установили, что имеются достоверные различия в глубине поражения печеночной ткани при воздействии на нее ВЧ генератором в I, II и III режимах на минимальном, среднем и максимальном уровне мощности (Kruskal-Wallis ANOVA-тест, p<0,001). Было установлено, что с увеличением мощности режима коагуляции глубина поражения ткани печени увеличивалась.

Наименьшая глубина поражения наблюдалась при воздействии ВЧ генератора в I режиме коагуляции на минимальном уровне мощности и составляла 46,0±2,2 мкм (95%-ДИ: 41,6-50,4, min – 9,7, max – 124,3), а наибольшая – в III режиме (спрей-режиме) на максимальном уровне мощности и составляла 649,8±36,2 мкм (95%-ДИ: 578,3-721,2, min – 130,2, max – 2155,6).

Нами отмечено, что через 3 суток после воздействия ВЧ генератора в режиме монополярной коагуляции формировалась зона некроза гепатоцитов. Вокруг участков коагуляции и вапоризации формировалась рыхлая фиброзная ткань с минимальными признаками созревания: мало сосудов, мало фибробластов и гематогенных клеток (рисунок 5).

В обширной зоне некроза обнаруживались участки резорбции и лизиса гепатоцитов, отмечалось образование многочисленных микроабсцессов. На границе с неповрежденной печенью грануляционная ткань более зрелая и широкая в области портальных трактов (рис. 6).

Рисунок 8 – Микрофотография. Ткань печени после воздействия ВЧ генератора (7 сутки), x50 Выраженный портальный фиброз. Окраска MSB.

Фиброз портальных трактов без септ (стрелка). Окраска MSB.

Отмечается выраженная эктазия и полнокровие портальных вен, распространенный фиброз портальных трактов без септ или с редкими септами.

Вне зоны повреждения отмечалось расширение и полнокровие синусоидных капилляров, вен.

На 7 сутки после воздействия относительно небольшой участок коагуляции и вапоризации покрывала широкая полоса рыхлой фиброзной ткани (рисунок 7).

Отмечалось незначительное формирование (эндотелизация) сосудов, пролиферация фибробластов, эпителизация и коллагенизация рыхлой соединительной ткани, окружающей сохранившиеся очаги коагуляции и вапоризации.

Прослеживалась обширная зона некроза гепатоцитов без участков резорбции и лизиса, минимальная лейкоцитарная инфильтрация. Также при использовании ВЧ генератора в зоне некроза отмечались множественные микроабсцессы и гепатоциты с преднекротическими изменениями. Вне зоны повреждения отмечался выраженный портальный фиброз без септ (рисунок 8), что свидетельствовало о неконтролируемом повреждении в глубь ткани печени по сосудистым структурам при использовании монополярной коагуляции.

Наблюдалось расширение и полнокровие синусоидных капилляров, вен.

Проведя анализ полученных данных мы установили, что имеются достоверные различия в глубине поражения печеночной ткани в остром эксперименте, на 3 и 7 сутки при воздействии на нее ВЧ генератором во II режиме коагуляции на среднем уровне мощности (Kruskal-Wallis ANOVAтест, p<0,001).

Выводы

1. При воздействии электрохирургического генератора в режиме монополярной коагуляции на ткань печени в области поражения можно выделить 3 зоны: коагуляции, вапоризации и кровоизлияния. Причем наиболее выраженный характер носит зона вапоризации (выпаривания), характеризующаяся наличием округлых, часто сливающихся и образующих кистозоподобные формирования гомогенных оксифильных тяжей.

 Более выраженное воздействие на сосуды в зоне применения, а так же на сосуды портальных трактов здоровой ткани оказывал электрохирургический генератор в режиме «спрей», что говорит о неконтролируемом повреждающем действии монополярной коагуляции вглубь печеночной ткани по сосудистым структурам.

3. Для хронического эксперимента на 3 и 7 сутки было характерно наличие нерезорбированных очагов коагуляции и вапоризации при использовании электрохирургического генератора. В зоне воздействия отмечались множественные микроабсцессы и гепатоциты с преднекротическими изменениями на фоне обширного развития фиброзной ткани.

4. Наибольшая глубина повреждения была при использовании электрохирургического генератора в режиме «спрей» (Мощность: 120 W при 1000 Омах, 6000 V, крест фактор – 5.5), максимально достигая 2155,6 мкм.

5. Оптимальным режимом работы электрохирургического генератора является режим контактной коагуляции II на среднем уровне мощности.

Литература

1. Драбкин, Р. Л. Аналитическая исследование температуры в ткани при моноактивной коагуляции / Р. Л. Драбкин // Медицинская техника. 1973. № 2. С. 16 – 21.

2. Лапароскопические технологии и их интеграция в билиарную хирургию / А. В. Малоштан [и др.]. Харьков: СИМ, 2005. 367 с.

3. Малиновский, Н. Н. История развития физических методов гемостаза в хирургии / Н. Н. Малиновский [и др.] // Хирургия. Журнал им. Н.И. Пирогова: научно-практический журнал. 2006. № 4. С. 75 – 78.

4. Пряхин, А. Н. Высокоинтенсивное лазерное излучение в лапароскопической гепатобилиарной хирургии / А. Н. Пряхин // Анналы хирургической гепатологии: научно-практический журнал / Международ. обществ. организация «Ассоциация хирургов-гепатологов». 2006. Т. 11, № 4. С. 38 – 43.

5. Федоров, И. В. Клиническая электрохирургия / И. В. Федоров, А. Т. Никитин. М.: ГЭОТАР-Медицина, 1997. С. 86 – 92.

6. Хромов, Б. М. Лазеры в экспериментальной хирургии / Б. М. Хромов. Л: Медицина, 1973; 191.

7. Saliken, J. C. Liver cryosurgery with curative intent: can we realize the promise? / J. C. Saliken [et al.] // Can. Assoc. Radiol. J. 1999. Vol. 50, N° 5. P. 295 – 297.

8. Telfer, J. R. The British journal of surgery / J. R. Telfer // Comparative study of abdominal incision techniques. 1993; 80: 2: 233 – 235.

9. *Trondsen, E.* An experimental study on effects of monopolar diathermy on the bile ducts / E. Trondsen [et al.] // Eur J Surg 1998; 164: 4: 297 – 303.

10. Tucker, R. D. Histologic characteristics of electrosurgical injuries / R. D. Tucker [et al.] // J Am Assoc Gynec Laparosc 1997; 4: 2: 201 – 206.

Поступила 5.05.2011 г.