Белорусский Государственный Медицинский Университет, г. Минск

ИССЛЕДОВАНИЕ ЗАГРЯЗНЕНИЯ ПОЧВ ТЯЖЕЛЫМИ МЕТАЛЛАМИ

Кафедра радиационной медицины и экологии

Авторы:

Шейдак С. В, Полуянчик А. А. 2 курс, лечебный факультет

Научный руководитель: ст. преп. Назарова М. А.

Актуальность научной работы:

Почва является индикатором экологической обстановки в городе, накапливая загрязнения поступающие с атмосферными осадками, поверхностными отходами, грунтовыми водами. Одни из самых значимых контаминантов — это тяжёлые металлы (далее – ТМ). К ним относятся все цветные металлы с плотностью, превышающей плотность железа. Некоторые из этих элементов необходимы для обеспечения нормальной жизнедеятельности растений, животных и организма человека. Но их избыток может привести к тяжёлыми заболеваниям и даже к гибели. Проведенный анализ позволит выяснить уровень загрязнения земельных ресурсов г. Минска и степень их соответствия санитарным нормам.

Цель научной работы:

Исследовать контаминацию почв металлами (свинец, кадмий, цинк, никель, медь) и водородный показатель (pH) в некоторых районах г. Минска, вблизи крупных предприятий и дорожных узлов. Оценить степень их соответствия ПДК (ОДК), выявить возможное влияние превышения показателей на здоровье человека.

Материалы и методы

В ходе исследования был проведен отбор почвенных образцов из нескольких точек г. Минска. По условиям лаборатории почва отбиралась на глубине штыка лопаты (около 30 см) в 50 м от дороги/25 м от предприятия. Забор производился методом конверта, осенью.

- Проведен рентиено-флуоресцентный анализ почвенных образцов. Подготовленная почва взвешивалась, отбиралась навеска необходимой для анализа массы (100 г), после чего на специальной пресс-форме формировались «таблетки». Определение элементного состава почв проводилось при помощи рентгенофлуоресцентного анализатора ElvaX с оригинальным программным обеспечением. После проведения рентгено-флуоресцентного анализа нами были получены протоколы исследования, которые содержат информацию о количественном элементном составе почвы.
- По методике ГНУ «Центральный ботанический сад НАН Беларуси» определен водородный показатель (рН) проб: сухая нарезка почвы растворялась в дистиллированной воде в соотношении 1:10, размешивалась, после выпадения осадка при помощи индикаторной бумаги проводились измерения.
- Проведен анализ данных экологического мониторинга, осуществляемого БелНИЦ «Экология» за 2014 год.

Влияние ТМ на организм

• МЕДЬ

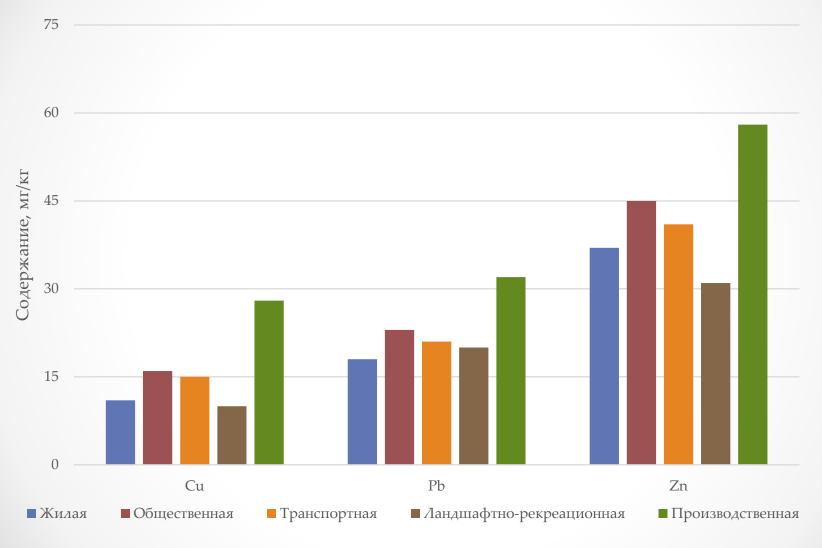
Неорганические соли меди, проникая в организм в избыточных количествах, инициируют гемолиз (разрушение красных кровяных телец) и агглютинацию эритроцитов. Симптомы выражаются желтухой и появлением крови в моче. При попадании соединений меди в желудок появляется тошнота, рвота, диарея.

• ЦИНК

Избыточное поступление цинка в организм сопровождается снижением уровня кальция и фосфора в крови и в костях, что приводит к остеопорозу. Цинк может влиять на процессы репликации ДНК, поэтому обладает мутагенной и онкогенной активностью. Также этот элемент имеет гонадотоксическое действие проявляющееся в снижении подвижности сперматозоидов.

• СВИНЕЦ

При хроническом поступлении ингибирует обмен железа, соединяясь с гемоглобином. Как следствие, развивается гипохромная анемия. Соединяется с фосфатом зубов и костей (Т1/2=30л), что может являться признаком отравления этим металлом. Проникает через ГЭБ и вызывает поражение мозга (особенно у детей). В РБ 35% детей с высоким уровнем свинца в организме.


• КАДМИЙ

Вызывает нарушение реабсорбции дистальных канальцев почек, протеинурию, глюкозурию, фосфатурию, разрушение печени и почек, приводит к сильнейшему нарушению функции почек. Избыток кадмия нарушает метаболизм металлов, особенно железа и кальция, нарушает действие цинковых и иных металло-ферментов, что может привести к остеомалации и остеопорозу, почечной артериальной гипертензии, мутациям.

• НИКЕЛЬ

Приводит к аллергическим реакциям, желудочно-кишечным расстройствам, повышению уровня эритроцитов, нарушению функции почек, снижению функции легких (при попадании ингаляционно). Связывает молекулы кислорода, препятствуя таким образом процессу окислительного фосфорилирования, и сульфгидрильные группы, снижая активность некоторых ферментов.

Среднее содержание ТМ в почвах различных функциональных зон г. Минска*

*по данным БелНИЦ «Экология»

Результаты исследования почв ОАО «Минский Тракторный Завод»*

Металл	ПДК, мг/кг	Фактическая концентрация, мг/кг	ФК в % ПДК
Цинк	55	182,13	331,1
Медь	33	86,68	262,7
Никель	20	61,76	308,8
Свинец	40	97,63	244,1
Кадмий	0,5	0,46	92,0

^{*}по данным БелНИЦ «Экология»

Результаты исследования почв ОАО «Минский Автомобильный Завод»*

Металл	ПДК, мг/кг	Фактическая концентрация, мг/кг	ФК в % ПДК
Цинк	55	<10	-
Медь	33	319	966
Никель	20	99,4	497
Свинец	40	81,0	202
Кадмий	0,5	0,763	153

^{*}по данным БелНИЦ «Экология»

Результаты исследования почв «Минская ТЭЦ-3»*

Металл	ПДК, мг/кг	Фактическая концентрация, мг/кг	ФК в % ПДК
Цинк	55	90,76	165,0
Медь	33	112,34	340,4
Никель	20	57,28	286,4
Свинец	40	34,77	86,9
Кадмий	0,5	0,68	136,0

^{*}по данным БелНИЦ «Экология»

Результаты исследования почв «Минская ТЭЦ-4»*

Металл	ПДК, мг/кг	Фактическая концентрация, мг/кг	ФК в % ПДК
Цинк	55	85,32	155,1
Медь	33	97,45	295,3
Никель	20	59,17	295,8
Свинец	40	32,17	80,4
Кадмий	0,5	0,33	0,66

^{*}по данным БелНИЦ «Экология»

Результаты Рентгено-Флуоресцентного анализа почвы вблизи дорог

Мосто сбора образиор	Фактическая концентрация, мг/кг				
Место сбора образцов	Цинк	Кадмий	Свинец	Медь	Никель
Ул. Аэродромная	108,963	0,322	85,381	31,806	16,655
Ул. Калиновского	48,419	0,167	29,386	37,467	4,219
Пр-т Партизанский	78,538	0,344	57,389	32,578	3,564
Ул. Долгобродская	89,498	0,109	62,578	27,639	5,392
Ул. Ванеева	187,963	0,483	63,148	32,498	6,322
Ул. Тикоцкого	287,108	0,319	27,398	7,108	4,837
Ул. Лобанка	321,476	0,467	79,867	8,201	1,566
Ул. Заводская	56,179	0,255	3,546	29,718	4,154
Ул. Я. Лучины	59,178	0,211	2,172	23,467	14,422
Лошицкий парк	58,352	0,221	4,478	19,389	5,589

пределах	Значение превышает
ПДК (ОДК)	ПДК (ОДК)

Значения водородного показателя (рН) в образцах

Место сбора образцов	Водородный показатель (рН)
Парк Севастопольский	5,5
Парк Дрозды	6
MT3	6
MA3	6,5
ТЭЦ-3	5,5
ТЭЦ-4	7

Как видно из результатов, большинство проб почв дали слабокислую реакцию среды (за исключением почвенного образца, взятого около ТЭЦ-4).

Выводы:

- 1. Среднее содержание тяжёлых металлов в почве около дорожных узлов меньше, чем возле крупных предприятий.
- 2. Слабокислая реакция отобранных почвенных образцов может приводить к лучшей растворимости ТМ, как видно из результатов.
- 3. Примерно 5% общегородской территории Минска характеризуется высоким уровнем загрязнения тяжёлыми металлами особенно промышленная и транспортная зона на юго-востоке Минска, что может негативно влиять на жизнь и здоровье населения.